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Emerging Perception of Activity Cliffs: A Brief Review 

Hafiz Saqib Ali1* 

 

Abstract 

Activity cliffs (ACs) can be characterized as the collection of structurally similar 

molecules with significant differences in their potencies. Such molecules are of core 

importance in medicinal and computational chemistry as any minute change in their 

structure greatly influences their biological action. They play an important role in the 

optimization during drug discovery and can be analyzed by structure-activity 

relationships (SAR), but the factors like the molecular representation, selection of the data 

sets, and the descriptor used greatly affect the end results. Due to these factors, ACs were 

thought to be a rarity as the concept is contrary to the similarity property principle (SPP), 

which forms the basis of quantitative structure-activity relationship (QSAR) modeling 

and likeness based strategies. Today, the data available on activity cliffs has been refined 

as well as increased a lot. In this review, we have described literature ranging from 1988 

to 2021 and highlighted the factors that are important in analyzing ACs and selecting the 

data sets for the analysis. Moreover, several strategies including matched molecular pairs 

(MMP) have been developed. MMP is mostly used for finding similar molecules but 

having a different group(s) responsible for the change in their potency. Furthermore, the 

role of ML (machine learning) in ACs has also been discussed as it could further refine 

the analysis of ACs by developing various logarithms and minimizing the faulty results. 

 

Keywords: Activity cliffs; Computational chemistry; Matched molecular pairs; 

Quantitative structure-activity relationship; Similarity property principle 

 

1. Introduction 
The groups of molecules having high 

structural similarities but different 

potencies are called activity cliffs (ACs) 

(Maggiora, 2006). Not only are they 

intriguing, but also are of prime 

importance in medicinal and 

computational chemistry and have 

remained under discussion for the last 

three decades, representing the details of 

SAR-discontinuity (Silipo & Vittoria, 

1991; Stumpfe & Bajorath, 2012; Stumpfe 

et al., 2014). Early determination of 

activity cliffs and an accurate 

understanding of the activity landscape 

(AL) are indispensable for the progression 

of computational models designed for the 

prediction of the activity of molecules 

(Guha & Van Drie, 2008; Guha & Van 

Drie, 2008). AL is used to characterize 

SAR (structure-activity relationship) by 

considering two or three dimensions in 

which chemical space is predicted as 2D 

projection and potency of compounds as 

the third dimension, thus making AL 

similar to the geographical maps that can 

be apprehended easily (Wassermann et al., 

2010; Waver et al., 2010; Peltason & 

Bajorath, 2010). If any insignificant 

http://ojs.ucp.edu.pk/index.php/ucpjst/index
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change in the chemical structure of 

compounds alters biological activity 

moderately, they are represented by 

smooth regions, and such compound 

mapping areas correspond to continuous 

SARs (Peltason These have proved to be 

advantageous for QSAR modeling and 

likeness-based strategies for analytical 

tools based on SPP (similarity property 

principle) (Guha & Van Drie, 2008; 

Bajorath et al., 2009; Johnson & maggiora, 

1990). Contrarily, discontinuous SARs 

refer to the canyon like regions formed 

when a little modification in the chemical 

structure of the compounds has a drastic 

impact on their potencies, giving rise to 

activity cliffs (Waver et al., 2010). In other 

words, ACs are the form of discontinuity 

in SARs which is the basis of the lead 

optimization ((Waver et al., 2010; Dimova 

et al., 2013).The reliability of the data 

under consideration is very important 

before the interpretation of the SARs. 

Moreover, the size of the data sets is also 

crucial as data sets with few compounds 

are harder to study for activity cliffs 

compared to the ones consisting of a large 

number of compounds (Medina-Franco, 

2013). The activity of these compounds 

can be studied efficiently against single- or 

multi-targets leading to single-and multi-

target activity landscapes (Wassermann et 

al., 2011). A set criterion has been 

established and is used for the analysis of 

ACs quantitatively to determine high 

structural similarity and difference in 

activity. For instance, medicinal chemists 

use empirical rules that are beneficial in 

converting the qualitative AL data into 

quantitative one. However, empirical rules 

are beneficial unless misused as Lipinski’s 

rule of five that overlooked the limitations 

of the rules (Faller et al., 2011; Ganesan, 

2008). Moreover, network-like similarity 

graph (NSG), structure-activity landscape 

index (SALI) and SARI (SAR index) can 

be employed to quantify SARs, and 

analyze ACs, as represented in the Figure 

1 (Stumpfe & Bajorath, 2012; Peltson & 

Bajorath, 2007; Hu & Bajorath, 2012) 

SALI have been proposed by Guha and 

Van Drie to assess the biochemical SAR 

model and is derived from examining the 

activities of specific interactions that don’t 

variate linearly with linear property 

changes (LeDonne et al., 2011). 

2. Role of molecular structures in 

ACs 
Molecular structures are not only 

crucial for obtaining actual ACs but also 

for drawing efficient SAR analysis. If the 

placement of bonds, protonation or 

tautomer formation is not proper, the 

results will be faulty. The type of 

descriptor can also affect the results. For 

instance, 2D molecular representation 

Figure 1 AC can be represented by three methods such as network-like similarity graph, AL and SALI graph. 

In the first graph, compounds are represented by nodes whereas pairwise similarity relationship is denoted by 

edges. In the second graph (AL), chemical space between compounds is represented as 2D projection whereas 
the third dimension is added to represent the potency of the compounds. In the third method (SALI), 

compounds are denoted by the nodes and edges representing ACs of different magnitudes. Reproduced with 

permission from Ref. (Stumpfe & Bajorath, 2012). Copyright © 2012, American Chemical Society. 
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showing two molecules as the same cliff 

can show different activity if analyzed by 

3D molecular representation, thus making 

the existence of ACs obscure. This 

deviation can be explained by using the 

concept of stereo-isomerization according 

to medicinal chemists. It is accepted now 

that actual ACs can be determined by 3D 

methods compared to 2D approaches 

(Yongye & Medina-Franco, 2012). 

Moreover, multiple molecular 

representation approach is best for 

minimizing the faulty cliffs in which final 

results are obtained by considering 

common conclusions (Yongye & Medina-

Franco, 2012; Medina-Franco et al., 2009). 

Additionally, the concept of “data set 

modelability” has been introduced by 

determining the effect of ACs on the 

working of QSAR models (Hu et al., 

2012). 

3. Estimating similarity between 

molecules 
Although the interpretation and 

detection of activity cliffs are challenging, 

medicinal chemists can easily extract 

useful information for analyzing SARs. 

According to Bajorath et al. molecular 

representation is an essential aspect of AL 

modeling. Furthermore, practical and 

interpretable results of the SARs are 

associated with the correct interpretation 

of ACs (Golbraikh et al., 2014; Agrafiotis 

et al., 2011). The importance of molecular 

representation has raised many questions 

like, is there any descriptor that can explain 

the appearance of ACs? Is there any 

particular depiction of chemical space that 

can be beneficial in investigating SAR 

related to any target? Is there any method 

for the better representation of AL 

modeling and for the identification of 

factual ACs? These questions are not 

difficult to answer. The response to the 

first question is that the descriptors used 

for the interpretation of activity cliffs must 

provide the information of variables that 

can be helpful in determining the unknown 

behavior of compounds regarding activity. 

For instance, finger-print representation 

can be used to detect cliffs serving as a 

process for the structure-based 

interpretation of activity cliffs (Mendez-

Lucio et al., 2012). If we talk about the 

chemical space, with the emergence of 

new targets and molecular libraries, 

chemical space can be expanded but many 

efforts are under process (Nguyen et al., 

2009; Lopez-Vallejo et al., 2012). The last 

concern can be addressed considering the 

approach proposed by Hu et al. explaining 

which substructure relationship must be 

preferred on computed similarity values 

(Yongye et al., 2012). The concept of 

matched molecular pairs (MMPs) and 

MMPs-cliffs made the interpretation of 

results easy from chemical perspective. 

The main challenge is to establish an 

interpretable way for the determination of 

faulty changes in three-dimensions used in 

ligand-target recognition (Yongye et al., 

2012; Agrafiotis et al., 2011). 

4. Methods for the identification 

of activity cliffs 
 Many computational protocols have 

been reported in various publications to 

apply the concept of AC and their 

identification. Predominantly, molecular 

fingerprint and Tanimoto similarity 

coefficient referred to as molecular graph 

descriptors are used to calculate similarity 

values to determine similarity between 

compounds on the basis of 2D similarity 

molecular representation (Stumpfe & 

Bajorath, 2012). Another method for the 

identification of ACs is matched molecular 

pair (MPP) formalism which analyze the 

pair of compounds based on the molecular 

substructure differing at only a specific site 

and yield objectively significant chemical 

explanation (Rabal & Oyarzabal, 2012). 

Another conscientious approach is based 

on 3D structures to determine ACs in 

which the bound ligands represent drastic 

activity difference despite spatial 

similarities in the complex structure with a 

protein of interest (target) as shown in 

Figure 2  (Rabal & Oyarzabal, 2012).   
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5. Convolutional neural network 

in forecasting activity cliffs 
 Recently, convolutional neural 

networks (CNN) have acquired catbird-

seat in chemical informatics and drug 

designing because specific features from 

the image data can be obtained by deriving 

CNN models from 3-dimensional images 

of ALs and 2-dimensional images of 

molecular graphs (Lopez-Vallejo et al., 

2012). Molecular matched pair (MMP) 

concept and its implementation is an 

ingenious logic for the well-ordered 

determination of structurally similar pairs 

with different potencies that are referred to 

as AC’s (Bajorath, 2017).The use of MPPs 

for the representation of AC’s, leads to the 

establishment of MPP-cliffs which are 

developed by the pair of compounds 

having potency difference but functional 

against the common target.[22] These MPP-

cliffs predict AC’s at various levels that is 

initiated from the utilization of support 

vector machine, based on compound pair-

based kernel function and fingerprint 

representation. This support vector 

machine is used to distinguish between 

MPP-cliffs from MPPs having no or small 

variation in potency (Thapa et al., 2020). It 

is a machine learning algorithm that works 

by constructing hyper-plane H to segregate 

the training data of two classes via 

adjusting distance between the classes in 

space (Iqbal et al., 2021). Subsequently, 

the methodologically simpler prediction of 

MPP-cliffs is carried out by implementing 

condensed graph of reaction formalism 

(Heikamp et al., 2012). Moreover, support 

vector regression is employed for the 

quantitative prediction of Potency 

difference generated by MPPs (Blaschke et 

al., 2021). MPP-cliffs are distinguished 

from MPPs by the fingerprint features that 

work by tracking back to the original 

compounds establishing accurate AC 

predictions by describing the critically 

crucial structures (Hussain et al., 2010). 

6. Molecules-in-molecules 

fragmentation based method 
 Molecules-in-molecules (MIM) is 

referred to as the multi-level hybrid energy 

fragmentation approach based on the 

supposition that chemical properties are 

not largely influenced by the groups far off 

from the area of interest (Thapa et al., 

2020; Hu et al., 2014). The basic principle 

of MIM is comprised of four steps namely 

(1) generation of non-overlapping small 

Figure 2 It illustrates the methods for the identification of activity cliffs (ACs). The ACs can be identified 

by molecular fingerprint, matched molecular pair and 3-dimensional (3D) structure based approach 
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fragments of larger molecules by 

fragmentation (2) devising overlapped 

primary substructures utilizing local 

interactions between fragments (3) 

employing inclusion-exclusion principle 

for forming derivative subsystem and (4) 

assessment of the energy of large 

molecules by adding the independent 

energies of sole substructures (Hu et al., 

2014) In 2020, Raghavachari and co-

workers have used quantum mechanical 

(QM) investigation to disclose the 

formation of ACs by using MIM 

fragmentation method. The main 

advantage was the reduced computational 

cost of QM estimations and calculations. 

Moreover, MIM method can also identify 

critical residues by residue specific energy 

decomposition analysis to distinguish 

between two ligands. Therefore, MIM is 

considered as an ideal method to 

apprehend ACs (Thapa et al., 2020). 

7. Activity cliffs in drug 

discovery 
ACs are important in drug discovery 

because a small change in the structure of 

a particular compound greatly influences 

its biological activity (Stumpfe et al., 

2014; Thapa et al., 2018). In medicinal 

chemistry, they play an important role in 

early phase drug discovery for finding the 

determinants of high interest in hit-to-lead. 

Although Acs are crucial in determining 

SARs information, medicinal chemists 

encounter many hurdles in the preparation 

and analysis due to the duality of Acs 

(Bajorath, 2019). The duality of Acs is 

similar to the potency difference and 

similarity parameters for defining Acs and 

effect their analysis, application and 

perception, thus making them 

controversial (Bajorath, 2019). The extent 

of expertise of medicinal chemist to handle 

Acs, the computational method for the 

identification of Acs and the variation in 

the SAR discontinuity meaning while 

optimization of lead can result in the 

duality of Acs (Bajorath, 2017; Bajorath, 

2019). 

8. Strategies for finding ACs 
There exist several strategies for the 

identification of ACs in databanks (Waver 

et al., 2010). ChEMBL is widely used 

database for finding the data sets that are 

formed with time (Stumpfe et al., 2013). 

One of them is the SALI strategy which 

identifies ACs by comparative scale 

method because the scale is not definite. 

SALI has a drawback as it identifies 

shallow or pseudo cliffs at a particular 

cutoff value (Waver et al., 2010). Some 

rules were set by professionals to identify 

the ACs. For example, a molecule must 

have activity in nanomolar range, an 

already determined likeness measure is 

performed, and the activity difference 

between two molecules must not be less 

than 100 fold (Waver et al., 2010). 

Matched molecular pairs (MMPs) concept 

has also been utilized for finding similar 

molecules that are distinct at some point. 

For example, the type of ring or an R group 

which is determined by the 

implementation of in-house algorithm as 

proposed by Hussain and Rea (Hussain & 

Rea, 2010). The characterization of ACs 

can be performed by various methods like 

presence of different R-groups and 

interactions between them, and 3D 

likeness determined by X-rays during 

ligand target interactions (Aguayo et al., 

2014). It must be considered that 

compound data sets chosen should have 

reported Ki values (Stumpfe et al., 2013).        

9. Synthetic relevance 
In chemoinformatics, molecular 

fingerprint descriptors form the basis for 

the calculation of Tanimoto similarity 

values for defining ACs (Stumpfe et al., 

2014; Thapa et al., 2018). It is hard to 

understand Tanimoto similarity values as 

they don’t depend on synthetic or analog 

relationship, thus MMPs (matched 

molecular pairs) are used to represent ACs 

as MMPs cliffs but with size-restricted 

chemical modifications (Hussain and Rea, 

2010). However, there is a drawback of 

MMP cliffs that they are unable to 
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determine synthetic relationships; 

therefore, a modified version 

retrosynthetic MMP cliffs (RMMP cliffs) 

was proposed in accordance with 

retrosynthetic rules by which systematic 

computational framework consisting of 

exocyclic single bonds in MMPs was 

substituted with fragmentation. RMMPs 

have been formed systemically from 

currently available compounds having 

activity data of high confidence (Hu and 

Bajorath, 2018). The main advantage of 

retrosynthetic bond fragmentation method 

is the small fragment space occupancy 

giving rise to smaller number of RMMP 

cliffs compared to MMP cliffs (Hussain & 

Rea, 2010; Hu & Bajorath, 2019). 

10. Target set-dependent 

differences in activity and 

optimization of compounds 
It is widely considered that potency 

difference is already set for the 

determination of ACs but actually potency 

difference vary depending on the target set 

(particular pharmacological target and 

compound’s activity class) (Hu & 

Bajorath, 2019). In order to avoid the 

ignorance of target set- dependent activity 

difference and enhancing SARs 

exploration, ACs need to be redefined. 

Accordingly, the threshold for AC 

formation is obtained by measuring the 

pair of compounds in a particular target set 

following the AC similarity criterion (Hu 

& Bajorath, 2019; Vogt et al., 2011). ACs 

duality may be due to the fact that how 

compounds are dealt by medicinal 

chemists or how they are analyzed 

computationally. As different target sets 

consist of different compounds from 

different sources, they require different 

optimization procedures and efforts to 

obtain factual ACs (Thapa et al., 2018). 

11. Coordination and frequency 

of ACs 
When analyzing a data set, number of 

ACs are obtained in a coordinated manner 

with huge variation in activities of 

structurally related compounds. Moreover, 

a single compound has the ability to form 

a large number of ACs with different 

analogs. In AC network, compounds 

present in a data set are represented as 

nodes, and pair-wise edges serve as 

activity cliffs and coordinated cliffs, 

produced by subsets of compounds, 

leading to disjoint cluster formation 

(Stumpfe et al., 2014; Demova et al., 

2015). AC clusters are more favorable for 

the analysis of SARs compared to isolated 

cliffs because >95% of the cliffs of various 

data sets are produced in a coordinated 

manner (Stumpfe & Bajorath, 2015; 

Stumpfe & Bajorath, 2012). Clusters of 

ACs often consist of “hubs” with 

numerous partner compounds forming 

center of local ACs representing molecules 

as nodes and such molecules are referred 

as “activity cliff generators”.( Stumpfe & 

Bajorath, 2012). Frequency of the 

occurrence of ACs for different data sets 

has also been found along with the 

coordination of ACs, and the information 

has been increased tremendously over time 

as total number of activity data was 

doubled from 2011 to 2015 with more than 

17,000 MMP cliffs in 2015 (Stumpfe & 

Bajorath, 2012). 

12. Determination of potency 

differences 
The measurement of potency 

differences related to AC production 

depends on the comparison of 

experimental values. The validity of AC 

assignments is certified by assessing the 

potency difference (in theory) using KD 

(dissociation constant) or Ki (assay-

independent equilibrium) values. The 

evaluation of ACs can also be completed 

formally with increasing potency 

difference as continuation of pairs of 

compounds (Hu et al., 2012). The use of 

the constant potency difference is 

preferred not only in the analysis of ACs, 

but also for finding ACs in databases 

(Stumpfe et al., 2012; Stumpfe et al., 

2014). Pair-wise potency difference is 

lower compared to constant potency 

difference threshold in analysis of analogs, 

and is significant statistically. Moreover, 

potency difference of nearly 100-fold is 
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usually utilized in AC analysis (Stumpfe et 

al., 2019). The role of constant potency 

difference threshold has made 

computational search for ACs easier, but it 

doesn’t consider class dependent activity 

difference in the distribution of compound 

potency which vary greatly in activity class 

due to similarity relationship between 

compounds (Stumpfe et al., 2020). AC 

analysis can further be refined by the class 

dependent deviation of potency difference 

threshold. For the determination of class 

dependent threshold, average of the 

compound pair-based potency difference 

distribution plus two standard deviations 

are statistically performed (Vogt, 2011). 

13. Activity cliff generations 
The evolution of the ACs is contributed 

to the variation in the manner of addressing 

similarity and potency difference. This 

variation played a part in differentiating 

among the three generations of two 

dimensional ACs, also known as 

molecular graph based ACs (Stumpfe et 

al., 2019; Stumpfe et al., 2020). First 

generation of ACs is classified as a 

separate group using constant potency 

difference threshold in all the activity 

classes and similarity measures based on 

sub-structures Stumpfe et al., 2020). In 

2015, they (first generation ACs) were 

reported based on ChEMBL release 20 by 

extracting 48,244 compounds having Ki 

values and were active against 746 targets. 

MACCS structural keys, MPP formalism 

and extended connectivity fingerprint with 

bond diameter 4 (ECFP4) were used to 

identify first generation activity cliffs with 

∆pKi ≥ 2, where ∆pKi represents potential 

difference threshold (Perez et al., 

2015;Stumpfe et al., 2020; Stumpfe et 

al.,2017) Second generation of ACs came 

into existence because of capturing single 

substitution site of structural analogs (R), 

and MMP cliff formalism with varying 

potency difference threshold depending 

upon activity class. Their search was 

initiated in ChEMBL release 23 from 

which 212 activity classes having potential 

for AC formation were identified (Hu et 

al., 2018). These 212 activity classes 

yielded 16,096 class dependent RMMP-

cliffs having ∆pKi between 1 and 2.5 (Hu 

et al., 2019). However, 11,773 RMMP-

cliffs were obtained in 195 classes when 

the ∆pKi was ≥ 2. Moreover, 145 RMMP-

cliffs containing inactive compounds that 

are obtained from screening assays in 

PubChem were also identified from the 

eight activity classes with available 

screening data (Hu et al., 2019). 

Furthermore, single or multiple 

substitution analog pairs belonging to 

same series gave rise to third generation 

ACs with activity class dependent potency 

difference threshold (Stumpfe et al., 

2020). They were 16,454 analog series-

based ACs in ChEMBL release 24.1 

having class-dependent potency difference 

threshold. Only 25.6% of 4204 instances 

were third generation ACs with multi-site 

cliffs while others contained a single site 

for substitution (Stumpfe et al.,2019). 

14. Activity cliffs containing 

privileged substructures 
 The concept of privileged substructures 

(PS) was introduced by Evans et al., 

representing non-class specific compounds 

with specific biological activities (Evans et 

al., 1988). They have been a center of 

attention in pharmaceutical research for 

long. It has been found that the activity 

cliffs comprising selected PS exhibited 

huge improvements in efficacy of ligands 

(Hu & Bajorath, 2020).  

15. ACs, chemoinformatics and 

machine learning 
QSAR studies are promoted due to 

continuous SARs and discontinuous SARs 

have negative impact. Several machine 

learning (ML) methods have been 

developed to assist chemoinformatics 

(Aguiar et al., 2013; Rose, 2013), and are 

involved in the classification and 

generalization of data and help in making 

findings logical (Rose, 2013).However, 

the ML methods need improvement as they 

just observe the “rolling hills” as the key 

signs for the determination of small ACs, 
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thus reducing the forth coming forecast 

steadiness (Guha, 2011). The 

determination of the occurrence of ACs in 

an area of ML and explaining the bad 

effects of ACs is an important task. 

However, a pre-processing innovative 

filtering approach (PRISM) was proposed 

by Smith and Martinez, and according to a 

study, ISMs represent estimations to an 

extra precision. This extra precision is not 

shown by all the ISMs but a huge 

correlation can be shown between ACs and 

Figure 3 A comprehensive representation of 3D AL. (a) A comparison between 2D and 3D activity landscape 
formed by dimension reduction for the analysis of a set of 112 acetylcholinesterase inhibitors, represented as 

MACCS fingerprints. (b) It represents the 3D AL analysis of a set of lipoxygenase inhibitors (252 inhibitors) 

and protein farnesyltransferase inhibitors (146 inhibitors) based upon Molprint 2D fingerprint representation. 
AL for lipoxygenase is indicating SARs continuity while AL for protein farnesyltransferase is representing 

SARs discontinuity. (c) TGT and Molprint 2D fingerprint are used for the analysis of ACs of 

acetylcholinesterase inhibitors that were used in Figure (a) but here just three compounds are mapped with 
their reported potencies. It shows that the ACs can be formed or not depending upon the molecular 

representation. Reproduced with permission from Ref (Wassermann et al., 2010). Copyright © 2010, 

American Chemical Society. 
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ISMs. In AL-modeling, ISM has the ability 

to perform similar incidences with 

different names in an area. Moreover, ISM 

can swing to the EL (elementary 

landscape) that can be renowned by 

outliers and noise. Three current outliers 

were discovered by Smith and Martinez 

that helped in equating PRISM by 

mediating discovery principles and noise 

reduction. Pre-removal of the cases 

determined by PRISM can help to enhance 

the precision of classification related to the 

instrument learning computation formed 

by initial data groups. Thus, removing the 

ISMs from ML procedures will make the 

suitable categorization difficult in advance 

training certificates (Guha, 2011). 

Moreover, Weka, a data mining suite, is 

used for the formation of a computational 

model and provides maximum flexibility 

for the frameshifting sites when analyzing 

a new data set for the analysis of ACs 

(Frank et al., 2004).  

16. Local vs universal molecular 

likeness 
It is necessary that the medicinal 

chemists use different calculations to 

analyze ACs in addition to employing 

different approaches for determining the 

likeness of compounds. Scalar molecular 

caption is responsible for regional 

similarities that involve the determination 

of molecular design by topological, 

functional and constitutional attitude and is 

novel to researchers working on 

chemoinformatics who are specialists of 

QSAR and drug-based pathway. On the 

other hand, medicinal chemists utilize all 

the molecular illustrations (2D chemical 

space depiction) based on fingerprints like 

MACCS keys (Rogers & Hahn, 2010), as 

represented in Figure 3a, which involves a 

comparison between 3D and 2D 

illustrations based on MACCS fingerprint. 

Furthermore, Figures 3b and 3c show 

comparison between the ACs of 

lipoxygenase and protein 

farnesyltransferase inhibitors and the ACs 

formed by TGT and Molprint 2D for the 

same compounds, respectively (Rogers & 

Hahn, 2010). 

17. Reasons for poor prediction 
The restriction in the prediction is not 

closely linked with the methodology but it 

is retaled with the data. A number of 

descriptors and statistical approaches are 

available that are used to validate and 

predict the data sets probably by cross 

validation. However, all the data sets can’t 

be predicted due to some reasons. These 

reasons for poor predictivity involve the 

absence of activity related features in 

descriptors, inability of QSAR suitability 

in complex relation between descriptors 

and activity, a huge variation in the 

experimental uncertainty of observed 

activities among molecules and the 

formation of more or steeper activity cliffs 

(Figure 4) (Sheridan et al., 2020).  

18. Solutions for poor 

predictivity 
If large uncertainty in observed values 

in dataset is the issue, routine multiple 

measurements of molecules to cancel its 

effect in the average and reduction in the 

assay experimental error can also 

Figure 4 It enlightens the reasons behind the poor prediction of activity cliffs and their possible solutions. 
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ameliorate the issue. The activity cliff 

metrices that can’t differentitate the ‘real’ 

ACs which may be revealed by reducing 

the uncertainty to a minimum level 

(Sheridan et al., 2020). According to the 

literature, the elucidation of ACs is 

possible by investigating the way 

molecules bound with receptors with 

various poses. If it is possible, none QSAR 

model alone can interfere with the 

unpredictability of ACs no matter what 

method or descriptor is used (Figure 4) 

(Sheridan et al., 2020).  

19. Nonadditivity analysis 
The determination of potential SAR 

outliers, nonadditivity (NA) and upper 

limit estimation of data set experimental 

uncertainty are the contributions of NA 

analysis. The term nonadditivity refers to 

the varied results obtained by the fusion of 

two new fragments as compared to the sum 

of their individual effect (Kramer, 2019). 

In case of linear SAR, NA can be an issue; 

but, if it is used intentionally, NA can 

occupy a crucial place in drug discovery. 

Additionally, NA analysis can help 

apprehend possible experimental noise and 

provides deep structural insights 

(Gogishvili et al., 2021). Nonadditivity in 

compounds can be caused by the variation 

in hydrophobicity and hydrophilicity, 

residual mobility, internal hydrogen bonds 

and clear conformational changes which 

causes NA above 2 log units (Baum et al., 

2010; Kramer et al., 2015). The calculation 

of NA is done by double transformation 

cycles that consist of four compounds 

linked by two indistinguishable 

transformations as shown in Figure 5. 

However, some experimental uncertainty 

is present in the values measured for each 

compound and the addition of these 

uncertainties provide apparent and false 

NA. Thus, this save the time of the 

researcher from finding explanations for 

the false non existing effects (Kramer, 

2019; Cockroft & Hunter, 2007; Fischer et 

al., 2007). 

20. Conclusions 
ACs have been found to be the heart of 

medicinal and computational chemistry as 

they play a conspicuous role in drug 

discovery. A large number of ACs have 

been recognized and studied by SARs 

Figure 5 A diagrammatic representation of nonadditivity analysis known as double transformation cycles. 
It consist of four compounds that are attached by identical transformations; whereas, the colored blocks in 

the diagram are representing different functional groups. Reproduced with permission from Ref (Kramer et 

al., 2021). Copyright © 2019, American Chemical Society. 
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analysis utilizing AL modeling. The 

occurrence of ACs limits the use of QSAR 

and likeness-based strategies, which 

support the concept that ‘structurally 

similar molecules are also potentially 

identical’. Today, ML has been used for 

the accurate analysis of ACs and plays a 

role in optimization for the lead-compound 

in drug designing by forming various 

algorithms. Despite all the efforts till now, 

many algorithms are still required to 

further ameliorate the analysis. 
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