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ABSTRACT  
Electric vehicles have emerged as an alternative way to reduce fossil fuel consumption, which is the 
cause of increasing environmental, economical and geopolitical problems. This paper reviews the 
strategies for charging electric vehicles smartly from the viewpoint of the grid. These strategies are 
classified into three categories. The strategies at the component level discuss the necessary aspects 
of batteries, their charging methods, and chargers for smart charging purposes. The strategies on the 
system level are discussed under the heads of unidirectional and bidirectional power flow strategies. 
Unidirectional power flow strategies manage the power flow from the grid to electric vehicles for their 
charging. The bidirectional power flow strategies, apart from charging the electric vehicles, also use 
their battery storage for grid support. Also, the strategies that can be deployed at the operational level 
are discussed. These strategies, on the one hand, tend to alleviate the stressful impacts of increasing 
the load of charging the electric vehicles on the grid, and on the other hand, use the energy storage 
capability of the electric vehicles for grid support. 

 
INDEX TERMS Electric Vehicles, Smart Charging, Power Flow Control of Electric Vehicles, 
Centralized Control, Decentralized Control 

 

I. INTRODUCTION 

Fossil fuels have been the main source of energy 
throughout the growth of human civilization. Increasing 
industrialization, technological advancements, and 
machine dependent lifestyle over the past few decades 
have stressed fossil fuels to a dangerous level. This has 
resulted in various environmental, economical and 
geopolitical problems. The greenhouse gas emissions 
have increased to a hazardous level. The prices of 
fossil fuels are increasing and becoming more and more 
shaky. Above all, the demand for fossil fuels, especially 
oil, has resulted in terrible peace-related problems, 
leading to the usage of oil as an economic weapon and 
the instability of oil-producing countries. So, naturally, the 
trend has shifted towards the use of alternative sources 
to meet human needs [1], [2]. The usage of Electric 
Vehicles (EVs) is one of the attractive options for this 
purpose. 

The usage of EVs reduces oil consumption, resulting 
in less greenhouse gas emissions. Also, the noise 
pollution is reduced. It reduces oil imports of a country, 
resulting in an improved economy. The cost per 
kilometer for an electric drive is less than that of an 
internal combustion engine. So, energy is used more 
efficiently. The energy stored in the batteries of EVs 
can be used to support the grid in terms of voltage and 
frequency regulation, peak load shaving, and tracking of 
Renewable Energy Sources (RESs). As a result, the 
number of EVs is increasing continuously [3]–[5]. 

From the grid perspective, EVs act as a load while 
charging. Studies have shown that the environmental, 

economical and grid-related benefits of EVs can be 
achieved if they are charged smartly with respect to the 
grid. If not charged smartly, a fleet of EVs may increase 
the peak load. This results in increased power demand, 
higher transmission losses, heating of transmission 
equipment, and ultimately high costs [6], [7]. With 
deregulated electricity markets, EVs should be charged 
smartly. Otherwise, they are of no economic benefit to 
the owner [8]–[10]. An EV powered by a coal-based power 
plant produces more pollution than an ordinary fossil fuel-
based vehicle [11]. In short, EVs would do more harm 
than good if not charged smartly [12]. 

This paper reviews smart charging strategies of EVs 
from the grid perspective. The aim is to reduce the 
burden of adding an extra load of vehicle charging to the 
grid, as well as to use the storage capacity of the battery 
for grid support. The strategies are described under 
three major categories. 

In Section II, component-based strategies are 
discussed. In Section III, strategies at the system level 
are described. In Section IV, strategies at the 
operational level are described. Finally, in Section V, the 
conclusions of the whole discussion are drawn, and an 
outlook is presented. 

 
II. STRATEGIES AT THE COMPONENT LEVEL 

No matter how smart the charging strategies are, nothing 
can be gained if the EVs are not able to cope with these 
strategies. Therefore, the components of the EVs should 
be able to comply with the smart charging strategies. This 
section discusses different aspects of the batteries, their 
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charging methods, and chargers that are essential for 
smart charging. 

From the grid perspective, batteries should have high 
efficiency, high energy density, high charging and 
discharging power, and smooth charging and 
discharging characteristics. High efficiency reduces 
energy losses. High energy density imparts flexibility of 
storage. High charging and discharging power make it 
possible to charge the battery rapidly during off-peak 
hours and deliver large amounts of power to the grid when 
required. Smooth charging and discharging 
characteristics are desirable for maintaining good power 
quality [13]. 

Initially, lead-acid batteries were used, but these were 
dropped due to low energy density and environmental 
hazards. Then came the Nickel batteries with higher 
energy densities as compared to the lead-acid batteries. 
But these batteries have low efficiency, high self-
discharge, and memory effect. Nowadays, lithium-ion 
batteries are used. These batteries have relatively high 
energy and power density and are capable of fast 
charging. Research is going on to improve the batteries 
from the grid and customer perspective [14], [15]. 

There are different ways to charge the battery. The 
most common method is constant voltage charging. In 
this method, the voltage is kept constant during the 
charging. The current is very high at the start and 
gradually falls to a very small value. The problem with 
this method is that it requires very high power at the 
start. The constant current method maintains a constant 
current during charging by changing the charging 
voltage. This method requires a complex method of 
monitoring temperature, voltage, and time to determine 
the cut-off. A better choice is the constant current 
constant voltage method. In this method, initially the 
battery is charged at constant current (battery voltage 
rises), and when the voltage reaches a predefined value, 
the charging method is shifted to constant voltage (now 
the current falls). This method is used for fast charging 
[16]. 

Instead of providing continuous voltage or current, 
these may be provided in the form of pulses. The width of 
the pulse is adjusted to meet the charging rate. A certain 
rest period is provided between the pulses to allow the 
chemical reaction to keep pace with the charging, thus 
avoiding the gas formation. This effect is strengthened 
by providing negative pulses. The selection of an 
appropriate charging method depends on local 
conditions like battery characteristics, charging circuits, 
driving routine, and grid constraints [14]. 

Charging is done through specialized power electronic 
circuits called chargers, which may be built inside the 
vehicle (on board) or outside (off board). On-board 
chargers are small, of low power rating, and used for 
slow charging. Off-board chargers are bigger in size, of 
high-power rating, and usually used for fast charging. 
These chargers use different control techniques to 
implement different charging processes and special 
circuits to lessen the grid impact of vehicle 
electrification. Typical examples include filters to reduce 
harmonics and snubbers to reduce inductive voltage 

spikes. The choice of a charger depends on the battery 
charging characteristics, driving schedule, and grid 
constraints [17]. 

 
III. STRATEGIES AT SYSTEM LEVEL 

This section discusses the strategies that can be opted 
for on the system level for charging the EVs smartly 
from the grid frame of reference. Such strategies can be 
categorized into unidirectional and bidirectional power 
flow strategies as described below. 
A. UNIDIRECTIONAL POWER FLOW STRATEGIES 

These strategies treat EVs as loads taking electricity 
from the grid and charging the EVs. They are broadly 
classified into centralized and decentralized strategies 
[11], [18]. Some examples are as follows. 
1) Centralized Strategies 

A central unit controls the charging of each EV. 
Centralized (also known as direct) strategies are simple 
to implement but involve high computational effort, 
extensive communications, and large delays. Also, there 
are issues of data privacy and hacking. So, these 
strategies are not appropriate for large systems [11], 
[18]. Some of the commonly used strategies are 
discussed below. 
A Simple Strategy for a Charging Station 

In a simple charging strategy, a centralized 
communication system inputs some data each time a 
new EV arrives, such as the arrival and departure times 
of the EV, the state of charge (SoC) of each battery, the 
capacity of the battery, and the extent to which the 
battery should be charged. This data is used to 
formulate an optimization problem to minimize the 
power losses under the constraint of charging the 
battery to the desired SoC within the given time 
schedule without exceeding the maximum power limit of 
the charging station. In this way, optimized charging 
schedules and charging rates are determined. Such a 
non-linear optimization problem can be solved by 
sequential quadratic optimization [19], [20]. 
Fuzzy Logic-Based Strategy 

The fuzzy logic technique uses linguistic variables to 
define a system, which are the words of a natural 
language, e.g., the linguistic variable for an air 
conditioning system may be defined as “temperature". 
Each linguistic variable is decomposed into various 
terms, e.g., cold, warm, etc., to qualify it. These 
variables are then quantified using membership functions, 
e.g., a numerical value is assigned to “cold" 
temperature. This process is called fuzzification. The 
interaction of these variables is assessed through 
different rules by an inference engine, e.g., if the 
temperature is warm, a command for cooling should be 
issued. Defuzzification of these assessments 
determines the output [21], [22]. 

Fuzzy logic based charging controller can be used 
to ensure a minimum network voltage while charging the 
EVs.The required input linguistic variables are the 
minimum bus voltage (obtained by power flow solution), 
SoC of the batteries (provided by the communication 
system between the EV and the battery), and electricity 
price (provided by the utility). These inputs are fuzzified 
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and assessed through knowledge-based rules by the 
inference engine to provide fuzzy charging levels. 
Defuzzification of these fuzzy charging levels results in 
crisp charging levels of the batteries. If these charging 
levels are maintained, the network voltage does not fall 
below a minimum value (usually 0.9 p.u.). For example, 
charging levels are reduced at peak load when the 
system is more vulnerable to voltage drop [23], [24]. 

As this algorithm is based on linguistic variables and 
general rules of system behaviour, it can be easily 
extended. As an example, the Vehicle to Grid (V2G) 
option may be added by introducing a “discharge" 
linguistic variable, which can be used to control the 
discharge of batteries for the grid support if surplus 
storage is available [24], [25]. 
Valley Filling Algorithm 

The off-peak hours appear as a valley in the load profile 
of a network. Stress on the grid caused by the charging of 
EVs can be reduced by charging the EVs during the off-
peak hours. Such a strategy is known as the valley-filling 
algorithm, which can be carried out in the following steps 
[26]–[28]. 

1) In the first step, the total charging power 
required by the EVs at each time step is estimated. 
This can be done by developing some stochastic 
models based on historically available data. Then 

the surplus power at the kth time step (𝑃𝑠𝑢𝑟𝑝
𝑘 ) is 

calculated as 

 

where (𝑃𝑐𝑜𝑛𝑣
𝑚𝑎𝑥) is the maximum conventional load 

and (𝑃𝑐𝑜𝑛𝑣
𝑘 ) is the conventional load at the kth time 

step. After that, the capacity margin index at the kth 
time step (CMk) is calculated as 

 

Where (𝑃𝑑𝑒𝑚𝑎𝑛𝑑
𝑘 ) is the charging power demanded 

by the EVs at the kth time step and is equal to the 
sum of the charging powers of all the EVs 
connected at that time step. The time slot with the 
highest capacity margin is selected to charge the 
EVs. This ensures that the deepest point of the so-
called load valley is filled first. 

2) The charging priority index at the kth time step 
for the nth EV (CPk) is calculated as 

 
where 𝐸𝑛

𝑘 is the remaining charging energy 
required at the kth time step for the nth EV, Tk is the 
remaining number of time intervals at the kth time 
step for the nth EV, ∆t is the duration of one time 
slot, and Pn is the power of the charger of the nth 
EV. Moreover, 𝐼𝑛

𝑠 and𝐼𝑛
𝑒 denote the serial number of 

the time step of the connection and disconnection 

of the EV, respectively. The EV with a higher 
charging priority index means it has a high priority 
for charging in a given time slot, and vice versa. It 
can be seen that the EVs that are more discharged 
and/or have less charging time are given high 
priority. If the surplus power is enough to charge all 
the EVs in the selected time slot, all the EVs are 
connected. Otherwise, EVs are connected 
according to their charging priority. 

3) The charging energy required and the time left 
for each EV are determined. If all the vehicles have 
zero charging energy required and/or the end of the 
time is reached, the program is terminated. 
Otherwise, the next iteration begins with the first 
step. 

It should be noted that the calculations of (𝑃𝑠𝑢𝑟𝑝
𝑘 ) use 

(𝑃𝑐𝑜𝑛𝑣
𝑚𝑎𝑥). This ensures that the valleys are filled no higher 

than the peak value of the conventional load. The 
underlying assumption is that the EVs can be charged 
by using the energy available in the gaps between 

(𝑃𝑐𝑜𝑛𝑣
𝑚𝑎𝑥) and (𝑃𝑐𝑜𝑛𝑣

𝑘 ) But if some vehicles remain 
uncharged at the end of the cycle, a value higher than 
(𝑃𝑐𝑜𝑛𝑣

𝑚𝑎𝑥) The value should be used. The lower this value, 
the lower the stress on the grid. One way to optimize 
this value is the dichotomy method as described in [29]. 
B. DECENTRALIZED STRATEGIES 

In decentralized (also known as indirect, local, or 
distributed) strategies, each part of the system, 
particularly EVs, takes part in decision-making. So, 
computations and communications are reduced as 
compared to the centralized strategies. This makes 

these strategies attractive for large fleets of EVs [11], 

[18]. Some of the strategies are discussed below 
Offline Heuristic or Rule-Based Strategy 

The algorithm of such a control strategy determines the 
hours with the lowest electricity price and the charging 
power patterns to charge the battery in that particular 
time span without exceeding the load limit of the house. 
Specific case studies for price and peak load reduction 
by using this algorithm can be found in [20] and [30]. 
This algorithm is mostly used for simple systems and 
does not take into account the charging of all the 
vehicles in a particular network [20]. It has a high 
computational time, especially for complex systems [24]. 
It is a decentralized control and does not take into 
account the charging of all the vehicles in a particular 
network [20], [31]. 

A typical offline heuristic algorithm takes into account 
the daily load profile of a house, total power allowed by 
the utility, energy prices, and the arrival and departure 
hours of EVs. Analytical relations are used for the 
calculations of the battery parameters, e.g., SoC, 
voltage, current, etc. 

First of all, the time duration for which the EV is 
available for charging is determined by the arrival and 
departure times. This time duration is sampled into time 
slots of equal length. The power available for charging 
the EV is calculated considering the power allowed by 
the utility and the losses of the charger. Different 
charging powers can be set for the EVs. Then the time 
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slots are sorted in ascending order of the energy prices. 
The time slot with the lowest energy price is selected for 
charging the EV. Then the current SoC of the EV is 
determined using analytical expressions. If the current 
SoC exceeds the desired SoC, the algorithm terminates. 
Otherwise, the voltage and the current are determined 
from the analytical expressions of the battery. If the 
battery current exceeds the nominal current, the battery 
is charged at the nominal current. Otherwise, the 
battery charges at the calculated current. Afterwards, the 
SoC is calculated, and the algorithm starts at the next 
time slot with the next lowest price. In this way, the 
charging is done at the lowest priced time slots. So, the 
charging price is minimized, and the peak load is 
avoided to the maximum extent [30]. 
A Price-Based Routing Mechanism for Charging Stations  

Charging patterns of EVs are randomly distributed in 
temporal and spatial domains. This puts a non-uniform 
stress on charging stations. For example, a charging 
station at a particular site may be more loaded at a 
particular time than the other one. This leads to 
inefficient service of charging stations, high power 
losses, and congestion situations from the grid point of 
view, as well as inconvenience for the customers [32]. 

To avoid all these, a routing strategy can be 
employed. When the vehicle arrival rate at a particular 
charging station exceeds a specified limit, an increased 
price is offered by the charging station. This will 
encourage the customers to go to a nearby station, thus 
increasing the uniformity of load distribution. For each 
diverted vehicle, a penalty is imposed on the charging 
station as well. This is done to ensure the best efforts of 
the charging station to satisfy the customers. With this 
vehicle diversion, a communication system is designed 
to communicate between the vehicles and charging 
stations about the available locations and prices. A 
game theoretic model is developed where the operator 
of charging stations acts as one player (leader) and EVs 
act as another set of players, which respond to the 
former player (followers). Each player opts for certain 
actions (called “‘strategies" in game theory) which result 
in certain outcomes (called “payoffs" in game theory). 
The strategy of the leader, i.e., operator of the charging 
stations, is to offer prices to earn maximum profit (leader 
payoff) by maximizing the number of customers and 
minimizing the diversions, keeping in view the grid 
constraints. In response to the leader, the followers, i.e., 
EVs, opt for a strategy of picking those charging 
stations where charging is least expensive (follower 
payoff) [33], [34]. 
Multi-Agent System-Based Strategy 

A multi-agent system can be used for charging a large 
number of EVs (in the range of millions) in a 
decentralized manner. This strategy considers the EV 
charging system as a set of autonomous agents. An 
agent is an entity (physical or virtual) that senses its 
environment and reacts in a predefined manner to attain 
certain goals. In a multi-agent system, various agents 
interact with one another following certain rules to 
achieve specialized goals. A properly designed multi-
agent system is robust (i.e., tolerant to faults) and modular 

(i.e., new agents can be added for enhanced abilities) 
[35], [36]. 

In a typical implementation, the system can be 
classified into three agents, namely charging stations, 
responsive EVs, and unresponsive EVs. Responsive 
EVs are those that can adjust their charging schedules 
in accordance with external constraints, e.g., energy 
prices, voltage limitations, etc. Unresponsive EVs have 
rigid charging schedules. The algorithm is carried out in 
the following steps [11]. 

1) In the 1st step, the arrival of a new EV is 
monitored. If there is a new EV, its charging is 
planned by referring to the 3rd step. If it is the first 
time step of the algorithm cycle (usually one day), 
the forecasting is done by executing the 2nd step. 
2) In the 2nd step, the forecasting of renewable 
energy generation and the demand of 
unresponsive EVs is made. This can be based on 
previously available data. The conventional load 
(i.e. without EVs) profile comes from the distribution 
grid operator. Then the total power demand on 
conventional resources at each time step for each 
feeder is given by: 

𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑖𝑣𝑒 𝐸𝑉 𝐿𝑜𝑎𝑑
+  𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑 𝑈𝑛𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑖𝑣𝑒 𝐸𝑉 𝐿𝑜𝑎𝑑
+  𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑 𝐶𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 𝐿𝑜𝑎𝑑
− 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑 𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒 𝐸𝑛𝑒𝑟𝑔𝑦 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

and the virtual energy price for each time step for 
each feeder is given by: 

𝑃𝑜𝑤𝑒𝑟 𝐷𝑒𝑚𝑎𝑛𝑑

𝑃𝑜𝑤𝑒𝑟 𝑅𝑎𝑡𝑖𝑛𝑔 𝑜𝑓 𝑡ℎ𝑒 𝐹𝑒𝑒𝑑𝑒𝑟
×  𝑃𝑟𝑜𝑓𝑖𝑡 𝐹𝑎𝑐𝑡𝑜𝑟 

Profit factor can be linear, quadratic, or any other 
function, depending on revenue targets. It should 
be noted that this price is a virtual price and does 
not reflect the actual utility price. It can be seen that 
the virtual price increases with the demanded 
power. Such a pricing strategy encourages the EVs 
to charge at low price time steps, which are the time 
steps of off-peak loads and/or high renewable 
energy generation. 
3) The 3rd step decides the charging schedule of 
each responsive EV on first come first serve basis. 
The objective is to minimize the product of the 
instantaneous charging power demand of the EV 
and virtual cost at that time step over the specified 
duration of charging. 

The constraint is that the sum of the instantaneous 
charging power demand of the EV in the specified 
duration should be equal to the desired charging 
capacity i.e. the particular EV should be charged to 
the desired capacity in the available duration. 
Moreover, the instantaneous charging power 
demand of the EV should not exceed the nominal 
power rating of the charging station. 
After the EV is scheduled, the power demand and 
energy price for each time step and each feeder 
are calculated again, as done in the second step. If 
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such an update of energy prices is not done, each 
new incoming EV will prefer to get charged at the 
lowest energy price points. If this is allowed to go 
on, the load at these points will continue to 
increase, and hence the stress caused by these 
points on the grid will increase as well. In the worst 
case, these valley points may become the peak 
load points. Moreover, such sequential updates 
would incentivize the early-coming responsive 
vehicles. 
4) After scheduling each responsive EV, the 
network is continuously monitored. This can be 
done by having measurements in real time or 
performing a power flow analysis. If all the 
measurements, e.g., voltages, thermal limits, etc., 
are within the specified limits, the monitoring is 
continued until the end of the algorithm cycle is 
reached, and the algorithm starts again from the 
first step. 
Meanwhile, if some new EV comes to the grid, its 
schedule is determined as stated above. In case 
something wrong happens resulting in 
unacceptable variations of the voltages or thermal 
limits, etc., the previously determined power 
demand and charging schedules are nullified. This 
may be the result of some unexpected change in 
production or demand. The remaining charging 
power demands of all the vehicles are determined. 
The charging station determines the power required 
to be rescheduled to solve the problem. Each 
responsive EV is rescheduled again. After 
rescheduling a vehicle, network conditions are 
monitored. If the problem is solved, no further EV is 
rescheduled. Otherwise, rescheduling of the next 
EV is done. This continues until the rescheduled 
power is zero or there is no EV left. As such, a 
condition is not the fault of the customer, no extra 
charges are applied for rescheduling. Some 
algorithms calculate the schedules at each time 
step to avoid such network problems, but this gives 
a high computational load to the algorithm. 

C. BIDIRECTIONAL POWER FLOW STRATEGIES 

Due to the presence of batteries, EVs act as spatially 
and temporally distributed energy storage. The idea of 
bidirectional power flow strategies is to use this 
available storage from the grid perspective, along with 
charging the EVs. The power of batteries can be used 
for maintaining the frequency and voltage, i.e., regulating 
the active and reactive power flow, preventing the line 
losses and transformer stress by providing local 
generation, providing the spinning reserve, harmonic 
filtering, tracking the RESs, and peak load shaving. But 
this is done at the cost of complex control techniques, 
changes in network operation and structure, high 
computational effort, large communication overhead, and 
complex fault protection. Moreover, the battery 
degradation is enhanced due to the increased number 
of charge/discharge cycles. As a result, the economic 
analysis of a particular charging strategy is essential. 
The bidirectional power flow strategies can be broadly 
classified into individual-based strategies and 

aggregator-based strategies [37], [38]. 

 
1) Individual-Based Strategies 

These are very simple strategies that deal with each EV 
on an individual basis. When an EV is connected to the 
grid, the owner enters the final SoC and departure time. 
The load curve of the house and the electricity price 
curve are also made available. Such curves are based 
on measured or estimated values. The controller 
allocates the charging and discharging time slots based 
on the fact that the EV should be charged in low price 
hours and discharged at high price hours, provided that 
the EV is charged to the desired level at the end of the 
charging period and the SoC limitations of the battery are 
not violated [8], [39]. 
2) Aggregator-Based Strategies 

The storage capacity of a single EV is very small from 
the grid's point of view. Using EVs individually for grid 
regulation is complex in terms of control, exhaustive in 
terms of communication, and less economical in terms 
of storage capacity and flexibility. So, many EVs are 
grouped and controlled as a whole. This is the essence 
of aggregator-based strategies [2], [40]. Some examples 
are as follows [40], [41]. 
Strategies Based on Load Frequency Control Signal 

First of all, the current SoC of each EV is measured. 
Then the required SoC for the scheduled driving routine 
is estimated, keeping in view the charging routine, 
battery capacity, and system efficiency provided by the 
vehicle owner. If the required SoC is below the current 
SoC, it means the vehicle has surplus energy, and it can 
participate in V2G operation. Otherwise, the vehicle is to 
be charged [42]. 

In the second step, the participating power of the 
aggregator is determined by a multi-objective 
optimization problem to maximize the profits earned by 
V2G operation and minimize the tracking error of the 
load frequency control signal. The constraints are that 
the current SoC of each vehicle should not go below the 
SoC required for the driving demand during the up 
frequency regulation and above the maximum SoC limit 
during the down frequency regulation. 

In the next step, the aggregator's participating power 
is allocated to each EV, which is to be charged or 
discharged. The objective is to minimize the change 
in the SoC of each EV under the constraints that the 
sum of individual vehicle allocated powers is equal to 
the participating power of the aggregator without 
exceeding the maximum charging/discharging power 
rating and without violating the SoC limitations of each 
battery [40], [43]. 
Strategies Based on Integration of Renewable Energy 
Sources 

Probability density functions of driving and charging 
routines are determined based on available statistical 
data, and hence, a stochastic model for the power 
requirement of EVs is determined. Similarly, the 
available data for solar irradiance and wind speed, along 
with the respective plant capacities, help to model the 
output power of RESs. Network operators provide load 
and frequency regulation data on the basis of which 
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respective forecasts can be made. Frequency regulation 
data is an indication of the grid power requirement as a 
positive or negative reserve. 

When a new EV arrives, its SoC is measured, and the 
owner is prompted to input the charging duration. After 
that, the grid power, power from RESs, and frequency 
regulation data are estimated. This data is fed to a 
controller, which determines the charging priorities. High 
priority means high charging power and vice versa. As 
different EVs have different arrival times, SoC and 
charging durations, different charging/discharging 
powers are assigned to these. For example, a vehicle 
with low initial SoC and a small charging duration 
requires high charging power, and it is unable to 
contribute to V2G operation. On the other hand, a 
vehicle with a high initial SoC and a long charging 
duration requires less charging power and can wait for 
off-peak and high renewable energy production times. It 
can be discharged during peak load times for grid 
contribution. Such vehicles are incentivized 
economically by dynamic pricing [?], [44], [45]. 
Strategies Based on Peak Load Reduction 

Each registered EV owner is identified with a unique 
radio frequency identification tag. Whenever an 
authorized EV enters a charging station, the owner is 
prompted to specify its final SoC and departure time. 
The technical details, such as system efficiency, battery 
type, etc., can be extracted from the tag. 

Based on this information, the charging time of the EV 
is estimated. If the charging time exceeds the departure 
time, the owner is prompted. The electricity price curve 
is fed to the controller, which is regularly updated based 
on available electricity market data. The price curve is 
quantized into a number of small intervals (usually 15 
minutes) during which the price is assumed to be 
constant. Based on the charging time and electricity 
price, the cheapest time intervals are selected. In this 
way, the cheapest possible charging and peak load 
reduction are ensured. 

If the owner allows for V2G operation, the time 
intervals with the highest price are determined for 
discharging under the constraint that the EV achieves its 
desired SoC at the moment of departure, and SoC 
limitations are not violated. Optimization of 
charging/discharging of EVs for the electricity price 
implicitly implies the optimization with respect to load 
demand [6], [46]. 

 
IV. STRATEGIES AT OPERATIONAL LEVEL 

The above-mentioned control strategies involve EVs 
either at the component level or system level. Strategies 
can be developed at the operational level that can 
manage the charging of the EVs from a managerial point 
of view. A few are discussed below. 

1) The discharged battery bank can be swapped 
with the charged one. This strategy adds enormous 
flexibility to EV scheduling but comes with cost, 
infrastructure, and regulation problems [14], [47]. 
2) The routes of EVs in a particular area are 
optimized and allocated efficiently to the available 
charging stations. This balances the load on 

charging stations and enables predictive modelling of 
charging behaviour. However, this approach is 
limited to a particular area and requires high 
computational effort for route modelling [48], [49]. 
3) EVs charged by an aggregator can be 
scheduled to share the energy stored in the batteries 
among themselves. EVs being charged in the homes 
can be used to provide electricity for the home 
during peak loads or faults, etc. This is called 
vehicle-to-home (V2H) operation [50]. 
4) Apart from the batteries, alternative energy 
storage systems, e.g., ultracapacitors and hydrogen-
based energy storage systems, are under 
investigation [51], [52]. 
5) Apart from the physical connection for charging, 
electromagnetic phenomena can be used to charge 
the EVs in a wireless manner. This strategy has the 
advantages of safety and durability, but it has low 
efficiency and high power losses [53], [54]. 

 
V. CONCLUSIONS 

The stress on fossil fuels has continuously increased 
over the past few decades, resulting in various 
environmental, economical and geopolitical problems. 
Electric vehicles can be used to reduce this stress if 
charged smartly. If not charged smartly, the vehicle 
electrification will be more harmful than beneficial. This 
paper discusses the strategies for smart charging of 
electric vehicles from the grid perspective. This means 
that the discussion on one hand is on the ways to 
reduce the burden on the power grid when an additional 
load of electric vehicles is added, and on the other 
hand, to use the energy storage capabilities of electric 
vehicles for grid support. As the first step, the selection 
of components for smart charging is discussed. 
Batteries, their charging methods, and chargers of 
different types are described. Then the strategies on the 
system level are discussed, which can be broadly 
classified into unidirectional and bidirectional power flow 
strategies. Unidirectional power flow strategies charge 
the electric vehicles from the grid, whereas the 
bidirectional power flow strategies not only charge the 
electric vehicles from the grid but also discharge them 
to support the grid when needed. Unidirectional power 
flow strategies are further classified based on 
centralized and decentralized strategies. Centralized 
strategies manage the charging of electric vehicles from 
a central control unit, whereas in decentralized 
strategies, the intelligence is distributed among the 
various components of the whole system, particularly 
the electric vehicles. The bidirectional power flow 
strategies can be split into individual and aggregator-
based strategies. Individual-based strategies consider 
each electric vehicle on an individual level, whereas 
aggregator-based strategies consider a fleet of electric 
vehicles. Since the storage capacity of a single electric 
vehicle is small for the grid, the aggregator-based 
strategies are practically useful. In the end, some new 
ideas like battery swapping, route optimization, battery 
energy sharing, vehicle to home concept, usage of 
alternative energy storages and inductive charging are 
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discussed. 

A next step can be to gather the research work done 
so far on these new ideas and to discuss their practical 
applicability. Various optimization techniques like 
genetic algorithm, particle swarm algorithm, interior point 
method, and bi-level programming, etc., which are 
usually used to implement these charging strategies, can 
be studied and compared as an extension of the present 
discussion. Moreover, the strategies outlined here can 
be used to improve the situation of electric vehicles in 
different case studies to bring pleasant effects for the 
grid integration of vehicle electrification. 
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ABSTRACT 

Accurate brain tumor detection remains critical yet challenging due to diagnostic complexity and variability in 

MRI interpretation. This study proposes a deep learning approach for automated multi-class brain tumor 

classification using transfer learning (TL). Three pre-trained CNN models, ResNet50, InceptionV3, and VGG16, 

were adapted and evaluated on a curated MRI dataset of 7,000+ images. Preprocessing, feature extraction, fine-

tuning, and integration of Explainable AI (Grad-CAM, LIME, SHAP) ensured robust and interpretable results. 

ResNet50 achieved the highest performance with 98% accuracy, 0.92 F1-score, and 0.96 AUC, outperforming 

the other models across all metrics, with strong convergence and minimal misclassification. ResNet50’s 

architecture enabled deeper feature learning and improved generalization. Explainable AI visualizations 

confirmed model focus on tumor-relevant MRI regions, enhancing clinical interpretability. The findings position 

ResNet50 as an effective and explainable solution for MRI-based brain tumor classification, suitable for future 

real-world deployment and further expansion to mobile and multi-center applications. 

 

INDEX TERMS: Brain Tumor Detection, Deep Learning, ResNet50, MRI Classification, CNN, Medical 

Imaging, Binary Classification, Tumor Diagnosis. 

 

I. INTRODUCTION 

Brain tumors are among the most critical neurological 

disorders, characterized by aberrant development 

of cells inside or around the brain that perturb normal 

brain function [ 1]. Depending on their nature, brain 

tumors are often classed into benign (non-cancerous 

and slow-growing) and malignant (cancerous and 

aggressive) [2]. According to the International Agency 

for Research on Cancer (IARC), more than 126,000 

new brain tumor cases are diagnosed annually 

worldwide, with over 97,000 deaths attributed to the 

disease each year. The World Health Organization 

(WHO) further projects a 5% annual increase in brain 

tumor cases globally, making early detection and 

effective treatment increasingly vital [3; 4].  

The early and correct diagnosis of brain tumors 

plays a vital role in enhancing patient outcomes, 

reducing mortality rates, and planning personalized 

treatment strategies [5]. Magnetic Resonance Imaging 

(MRI) has evolved as a key imaging technique owing to 

its non-invasive quality and ability to obtain superior 

resolution soft-tissue contrasts. However, the manual 

interpretation of MRI images by radiologists is a time-

consuming process that is susceptible to diagnostic 

inconsistencies, inter-observer variability, and potential 

oversight, especially when dealing with large imaging 

datasets [6; 7]. 

In the past couple of years, the rise of Artificial 

Intelligence (AI), notably deep learning (DL), has 

transformed the landscape of medical image analysis 

[8]. AI models are now capable of learning complex, non-

linear representations from raw image data, thus 

assisting healthcare professionals in decision-making 

processes [9]. Among these models, Convolutional 

Neural Networks (CNNs) have shown remarkable 

performance in a broad variety of computer vision 

applications, including classification of images, 

segmentation of images, and object recognition in 

images. Their success in the biomedical domain has led 

to promising outcomes in brain tumor classification, 

localization, and segmentation [10]. 

However, deep CNNs require substantial labeled data 

and computational resources for training from scratch, 

which poses a significant limitation in medical imaging, 

where curated and annotated datasets are limited due to 

privacy concerns, expert availability, and patient 

variability. To overcome this challenge, transfer learning 

has emerged as a strong alternative. Transfer learning 

facilitates the use of pretrained deep learning (DL) 

models, generally developed on massive datasets like 

ImageNet, to be fine-tuned or adapted for specific 

medical tasks with minimal training data and 

computational cost. 
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Recent investigations have examined the use of CNN 

models such as VGG-16, ResNet, Inception, and hybrid 

models for the classification of brain tumors. For 

example, InceptionV3 was used with ensemble 

classifiers to achieve high accuracy on brain MRI scans. 

A CNN-SVM combination was employed and achieved 

over 95% classification accuracy. The fine-tuned 

versions of VGG and ResNet were used to improve 

performance. These studies confirm the viability of DL-

based methods but often focus on binary classification 

(tumor vs. no tumor) or evaluate a single model 

architecture in isolation [11; 12]. 

Moreover, there are several remaining limitations in 

existing literature: 

• Lack of comparative analysis across multiple 

pretrained CNN architectures using a consistent 

dataset and evaluation framework. 

• Absence of multi-class classification studies that 

distinguish between glioma, meningioma, pituitary 

tumor, and no tumor categories, which is essential 

for real-world clinical deployment. 

• Minimal investigation into the impact of different 

transfer learning strategies (i.e., feature extraction vs. 

finetuning) under the same experimental setup. 

• Limited exploration of resource-efficient models 

suitable for deployment in hospitals with constrained 

computing environments. 

 
A. MOTIVATION AND OBJECTIVE 

This work intends to avert the gaps by setting up a 

transfer learning-based deep learning framework that 

applies and compares three state-of-the-art pre-

trained CNN architectures, ResNet-50, InceptionV3, 

and VGG-16 for multi-class brain tumor classification. 

The models are evaluated using a comprehensive MRI 

dataset obtained from multiple open-access sources, 

including Br35H, SARTAJ, and Figshare, containing 

over 7,000 labeled images. Both feature extraction and 

fine-tuning strategies are employed to investigate the 

effect of transfer learning depth on classification 

performance.  

Through extensive experimentation and evaluation 

using metrics such as F1-score, accuracy, precision, 

and recall, the research seeks to discover the optimum 

model configuration for real-world deployment. The 

overarching goal is to build an automated, accurate, and 

resource-efficient computer-aided diagnostic (CAD) 

mechanism for the prompt identification and 

categorization of brain tumors, thereby reducing 

radiologists’ workload and enhancing diagnostic 

confidence in clinical environments. 

 
B. KEY CONTRIBUTIONS 

The significant advancements of this work are outlined 

as follows: 

1) Development of a Transfer Learning 

Framework: A robust and scalable deep learning 

system is provided for diagnosing brain cancers from 

MRI images, utilizing transfer learning on pre-trained 

CNN architectures, ResNet-50, InceptionV3, and 

VGG-16. 

2) Multi-Class Brain Tumor Classification: The 

study addresses a four-class classification problem 

involving gliomas brain tumor, meningiomas brain 

tumor, pituitary tumors, and no brain tumor 

categories. This enhances the clinical relevance of 

the proposed system beyond binary classification. 

3) Comparative Analysis of Transfer Learning 

Strategies: Both feature extraction and fine-tuning 

techniques are implemented and analyzed under the 

same experimental settings to assess their 

effectiveness on medical image classification tasks. 

4) Utilization of a Large and Diverse Dataset: A 

comprehensive brain MRI dataset comprising over 

7,000 labeled images from multiple publicly available 

sources (Br35H, SARTAJ, and Fig-share) is curated 

and used for training, validation, and testing. 

5) Performance Evaluation Using Multiple 

Metrics: The models are tested using important 

classification metrics that involve precision, recall, 

F1-score, and accuracy, along with confusion 

matrices for detailed performance assessment. 

6) Design of a Resource-Efficient AI Solution: 

The research demonstrates that high-performance 

classification can be achieved without training 

models from scratch, making the proposed solution 

viable for deployment in resource-constrained clinical 

environments. 

7) Key feature identification using XAI: To 

improve the transparency and interpretability of the 

model, the Explainable AI (XAI) Grad-CAM model is 

used, which has generated heat maps of MRI 

images that highlight the regions of the brain tumor. 

The rest of this work is organized as follows: Section II 

analyzes relevant work on brain tumor detection using 

machine learning and deep learning, noting gaps in the 

field. Section III explains the suggested technique, 

including dataset preparation, transfer learning 

methodologies (feature extraction vs. fine-tuning), and 

model architectures (ResNet50, InceptionV3, VGG16). 

Section IV describes the experimental setup, evaluation 

metrics, and hardware configuration. Section V 

presents the results, with a  comparative analysis of 

model performance across accuracy, loss, F1-score, 

and AUC. Finally, Section VI concludes the study, 

discusses clinical implications, and suggests future 

directions. 

 
II. RELATED WORK 

Over the last decade, the integration of Artificial 

Intelligence (AI) technologies, notably Machine Learning 

(ML) and Deep Learning (DL), into medical imaging has 

significantly transformed brain tumor detection and 

classification methodologies. These innovations have 

brought promising advancements in terms of diagnostic 

automation, accuracy, and efficiency. However, despite 

the increasing adoption of AI in neuroimaging, several 
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persistent limitations in current research impede 

widespread clinical adoption, including poor model 

generalizability, lack of interpretability, computational 

inefficiencies, and limited scalability to real-world 

medical environments. 

Initial approaches in this domain largely relied on 

traditional machine learning methods applied to 

handcrafted features extracted from MRI images. For 

instance, the study Design and Analysis for 

Advancements in Brain Tumor Detection Model by using 

Machine Learning (ML) Techniques employed classical 

ML algorithms to process and classify MRI scans. 

Although these models demonstrated a baseline 

capacity to differentiate between tumor types, they 

struggled with low segmentation precision, high false 

positive rates, and poor adaptability across datasets 

with different acquisition parameters [12]. These 

limitations underscore the challenges posed by manual 

feature engineering and rule-based classification 

strategies in complex imaging tasks. 

To systematically assess developments in this 

domain, several literature reviews and meta-analyses 

have been conducted. The Systematic Literature 

Review on ML and DL from 2013 to 2023 compiles a 

decade’s worth of studies and reveals a heavy 

dependence on annotated datasets, inconsistent 

imaging protocols, and a lack of standardized evaluation 

benchmarks. These issues severely limit model 

reproducibility and generalization, particularly when 

deployed across diverse clinical institutions [13]. 

Moreover, survey-based studies such as Brain Tumor 

Identification and Classification Using Machine Learning 

(ML): An In-Depth Survey and Brain Tumor Identification 

Using Machine Learning (ML) have highlighted the 

evolution of ML in neuro-oncology while identifying 

several inherent limitations. These include high intra-

class variance due to morphological differences among 

tumor types, inter-scanner variability, and the time-

consuming nature of manual diagnostic processes. 

These studies emphasize that traditional ML systems are 

often error-prone and inefficient for real-time decision-

making, particularly in resource-limited clinical 

environments [14; 15]. 

The transition to deep learning marked a 

significant leap in model performance, particularly for 

feature extraction and classification by using 

convolutional neural networks (CNNs). Nonetheless, 

several DL-based studies exhibit shortcomings. For 

instance, works such as Classification of Brain Tumor 

Detection Techniques: A Review and Empowering 

Healthcare with AI introduced hybrid AI approaches that 

combine multiple ML/DL models. While these 

architectures yielded improved accuracy, they suffered 

from increased model complexity, higher computational 

costs, and difficulty in deployment due to hardware 

constraints and the requirement for large annotated 

datasets [16; 17]. 

Other integrative studies, like Brain Tumor Detection: 

Integrating ML and DL, explored dual-pipeline systems 

combining traditional ML with CNN-based classifiers. 

Although these attempts sought to utilize the best of 

both worlds, they resulted in increased training duration, 

limited scalability, and suboptimal performance when 

applied to multi-class tumor classification scenarios [18]. 

Deep learning architectures specifically designed for 

medical image analysis, such as InceptionV3 and 

ResNet-50, have demonstrated state-of-the-art results 

in tumor classification tasks. For example, the work An 

Inception V3-Based Glioma Brain Tumor Detection in 

MRI Images leveraged deep CNNs for detecting gliomas 

with high accuracy. However, the model required 

extensive hyperparameter tuning and access to high-

quality, annotated data, making it unsuitable for 

deployment in low-resource hospitals [16]. Similarly, 

Deep Learning-Enhanced MRI for Brain Tumor 

Detection showcased improved feature learning through 

DL but faced overfitting issues due to limited sample 

diversity and a lack of interpretability mechanisms [19]. 

Further, the study Optimizing Brain Tumor 

Classification with ResNet-50 Feature Extraction 

examined the effectiveness of residual networks in 

extracting hierarchical features from MRI data. Despite 

achieving impressive accuracy metrics, the 

computational demands of ResNet-50 present a 

practical barrier to its clinical application, particularly in 

rural or under-resourced settings [6]. 

Comparative analyses, such as A Comparative Study 

of DL vs. ML, clearly show the superiority of deep 

learning in terms of raw performance but also expose 

concerns regarding training time, memory consumption, 

and lack of transparency in decision-making processes. 

These limitations hinder clinical trust and adoption, 

especially when models are treated as black-box 

systems [17]. 

The problem of data imbalance and generalization is 

also prominent in studies like Identification of 

Challenges and Limitations in Detection and 

Segmentation of Brain Tumors. These works identify key 

challenges, including skewed class distributions (e.g., 

more glioma cases than meningioma), segmentation 

inaccuracies, and a lack of robust evaluation 

frameworks that cover both tumor detection and multi-

class classification [20]. 

To improve upon traditional and deep learning 

approaches, hybrid models have also been introduced. 

Brain Tumor Detection Using Hybrid Machine Learning 

Models proposes an ensemble-based ML approach to 

enhance predictive accuracy. While performance 

improvements were noted, the added complexity and 

extended training requirements complicate clinical 

deployment timelines and maintenance cycles [18]. 

From this extensive literature review, it becomes  
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Evident that most existing studies focus on binary 

classification (tumor vs. no tumor), evaluate a single 

network architecture in isolation, or fail to investigate 

different transfer learning strategies comprehensively. 

More critically, very few works address the problem of 

computational feasibility in real-world clinical 

workflows, especially those involving high-resolution 

images and multi-class tumor scenarios [19; 20]. To 

address these gaps, our proposed research introduces 

a robust and unified transfer learning framework that: 

• Performs four-class categorization spanning 

gliomas, meningiomas, pituitary tumor and no tumor 

categories. 

• Evaluates and compares three state-of-the-art 

pretrained CNN architectures: ResNet-50, 

InceptionV3, and VGG-16. 

• Benchmarks two core transfer learning strategies, 

feature extraction and fine-tuning, under a uniform 

experimental protocol. 

• Emphasizes computational efficiency, thereby 

enabling practical deployment in both well-equipped 

and resource-constrained clinical environments. 

This work aims not only to improve classification 

performance but also to bridge the translational gap 

between model development and clinical application. 

Our approach incorporates real-world constraints and 

focuses on generalizability, interpretability, and 

scalability to ensure relevance and impact in actual 

diagnostic settings, as shown in Table I. 

 
III. SYSTEM METHODOLOGY 

This section elaborates on the full technique utilized for 

the creation of a transfer learning-based brain tumor 

classification system employing deep convolutional 

neural networks (CNNs). The proposed methodology 

tries to solve the shortcomings mentioned in previous 

techniques by using the capabilities of three pre-trained 

models, ResNet-50, InceptionV3, and VGG-16 on a 

large-scale, multi-class MRI dataset. The methodology 

is composed of several stages: data acquisition and 

preprocessing, architecture adaptation, transfer learning 

strategy, training algorithms, optimization methods, 

performance evaluation, and integration of Explainable 

AI (XAI) for model interpretability. 
A. OVERVIEW OF THE PROPOSED FRAMEWORK 

The proposed system consists of an end-to-end deep 

learning pipeline designed for the classification of brain 

MRI images into four diagnostic categories: gliomas, 

meningiomas, pituitary tumors, and no tumor. Each 

input image undergoes a standardized preprocessing 

phase before being passed into one of the selected pre-

trained CNN architectures. The models are adapted 

TABLE 1: Comparison of Existing Work vs. Proposed Methodology 

Study / Reference Limitations Identified Our Proposed Solution 

Design and Analysis for 
Advancements in Brain Tumor 
Detection [12] 

Low segmentation accuracy; high 
false positives 

ResNet50, InceptionV3, and VGG-16 
with robust feature learning and 
reduced false detection. 

Systematic Literature Review on 
ML and DL (2013–2023) [13] 

Heavy reliance on labeled data; 
inconsistent quality 

Transfer learning with pre-trained 
models lowers annotation 
dependency 

Brain Tumor Detection Using 
Machine Learning: A 
Comprehensive Survey [14] 

Morphological variation and imaging 
inconsistency 

Multi-class classification across four 
tumor types improves generalizability 

Brain Tumour Detection Using 
Machine Learning [15] 

Time-consuming manual analysis; 
prone to error 

End-to-end automated deep learning 
classification 

Classification of Brain Tumor 
Detection Techniques: A Review 
[16] 

Tumor variability impacts detection 
accuracy 

CNN models trained on diverse 
and augmented datasets 

Empowering Healthcare with AI 
[17] 

Limited annotated MRI data; 
overfitting risk 

Combines large public datasets with 
augmentation and regularization 

Brain Tumor Detection: 
Integrating ML and DL [18] 

Complex model integration and 
training duration 

Lightweight architecture and efficient 
transfer learning strategies 

Deep Learning-Enhanced MRI for 
Brain Tumor Detection [19] 

Overfitting on small datasets; poor 
interpretability 

Standardized dataset and 
benchmarking; visual explainability 
planned (e.g., Grad-CAM) 

An InceptionV3-Based Glioma 
Detection [16] 

Requires large annotated data and 
hyperparameter tuning 

Efficient use of public datasets with 
less tuning via transfer learning 

Optimizing Brain Tumor 
Classification with ResNet-50 [6] 

Computational cost limits deployment Balanced performance and efficiency 
in clinical settings using fine-tuning 

A Comparative Study of DL vs. ML 
[17] 

DL models not feasible for low-
resource clinics 

Designed for high accuracy and low 
hardware requirements 

Identification of Challenges in 
Tumor Segmentation [20] 

Class imbalance and segmentation 
errors 

Balanced multi-class dataset and 
evaluation metrics used 

Brain Tumor Detection Using 
Hybrid ML Models [18] 

High complexity and extended 
training time 

Streamlined transfer learning 
framework for quick deployment 
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using transfer learning techniques, either feature 

extraction or fine-tuning, to classify tumors effectively with 

limited training data. To ensure trust and clinical 

acceptance, Explainable AI (XAI) approaches are 

incorporated to bring visibility into the model’s process of 

decision-making. 
B. DATASET DESCRIPTION AND PREPROCESSING 

The MRI dataset employed in this study comprises a 

combination of three publicly available sources: Br35H, 

SARTAJ, and the Fig share repository. These datasets 

contain axial T1-weighted contrast-enhanced (T1W-CE) 

MRI brain images with corresponding annotations 

across four categories. In total, 7,022 images were 

collected and layered into training (70%), validation 

(15%), and test (15%) subsets to ensure a balanced 

evaluation. 

Image preprocessing is critical for standardizing data 

input across different models and includes the following 

steps: 

• Resizing: Images are resized to 224×224 pixels for 

ResNet-50 and VGG-16, and 299×299 pixels for 

InceptionV3 to match the input layer specifications. 

• Normalization: Pixel intensity data is adjusted to 

the [0, 1] range to ensure uniform input. 

• Data Augmentation: Techniques such as 

horizontal/vertical flips, zooming, and random 

rotations are used to artificially increase the dataset 

and enhance generalization. 

• Label Encoding: Class labels are single-hot 

encoded to meet the categorical output format of 

the models. 

 

C. TRANSFER LEARNING STRATEGY 

Transfer learning is leveraged to reuse knowledge 

acquired from models trained on the ImageNet dataset. 

Two approaches are employed: 

1) Feature Extraction: The pre-trained 

convolutional base is frozen, and only the top 

classification layers are retrained on the MRI dataset, 

as shown in Figure 1. This method is computationally 

efficient and less prone to overfitting. 

2) Fine-Tuning: A portion of the higher-level 

convolutional layers is unfrozen and retrained 

alongside the classifier. This allows the model to 

learn domain-specific features relevant to MRI data, 

offering better performance when the training data is 

moderately sized. 

 

 
FIGURE 1: Samples of datasets used in training and testing. 

D. MODEL ARCHITECTURE ADAPTATION 

In this study, three widely recognized pre-trained 

FIGURE 2: Adapted architectures of VGG-16, ResNet-50, and InceptionV3 with transfer learning classifier heads. 
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Convolutional Neural Network (CNN) architectures, 

Res-Net-50, VGG-16, and InceptionV3, are adapted to 

perform multiclass classification of brain tumors. These 

designs are chosen for their shown efficacy in large-

scale visual identification challenges and their capacity 

to generalize to medical imaging domains via transfer 

learning, as seen in Figure 2. 

The VGG-16 architecture is a 16-layer deep CNN that 

employs a simple and consistent design pattern of 

stacked three-by-three 3x3 convolutional layers, 

succeeded by max-pooling layers. It is known for its 

depth and uniform structure, which makes it both 

interpretable and effective for transfer learning. In this 

work, the original classifier head of VGG-16 is removed 

and replaced with a custom classification block 

consisting of a Flatten layer, a fully connected A dense 

layer comprising 512 units with ReLU activation, 

followed by a Dropout layer (rate 0.5) to mitigate 

overfitting, and concluding with a final dense layer 

including 4 output neurons and softmax activation to 

support multi-class prediction. 

The ResNet-50 deep residual network model is a 50-

layer network that introduces identity-based skip 

connections, allowing gradients to bypass one or more 

layers during backpropagation. This solution directly 

tackles the vanishing gradient issue that often impacts 

deep neural networks. By facilitating the training of far 

deeper structures, ResNet-50 can capture complex and 

abstract features within MRI data. In this framework, the 

final fully connected layers of ResNet-50 are replaced 

with a Global Average Pooling (GAP) layer that follows a 

Dense classification layer with softmax activation to 

produce class probabilities for the four tumor kinds. 

The InceptionV3 architecture is a highly modular CNN 

that utilizes inception modules, which perform multiple 

convolution operations in parallel (e.g., 1×1, 3×3, 5×5) 

within the same layer. This design enhances 

E. TRAINING ALGORITHMS AND OPTIMIZATION 

Two training algorithms are proposed to guide the 

model learning process: 

Algorithm 1: Baseline Transfer Learning 
Classifier (21) This algorithm initializes the pre-
trained CNN with its convolutional base frozen (feature 
extraction), appends a custom classifier head, and trains 
only the added layers using categorical cross-entropy. 

Algorithm 2: Progressive Fine-Tuning Strategy 

(22) This advanced strategy begins by training the 

classifier head (as in Algorithm 1), then progressively 

unfreezes deeper layers of the convolutional base for 

additional training. A small learning rate is maintained to 

avoid destabilizing pretrained weights. This staged 

unfreezing allows gradual domain adaptation. 

Optimization: All models are built on the Adam 

optimizer with a learning rate of η= 10−4, categorical 
cross-entropy loss, and accuracy as the main 

performance indicator. Regularization methods such as 
dropout and early halting are applied to avoid overfitting. 

 

 

F. EXPLAINABLE AI INTEGRATION 

To boost model transparency and interpretability, there 

are several Explainable AI (XAI) strategies, such as 

Grad-CAM, LIME, and SHAP, offering insights into the 

decision-making process of the trained models. The 

description of each strategy is given below. As our 

dataset is large, LIME and SHAP are computationally 

expensive to handle such a large dataset, Grad-CAM 

the XAI method, is applied in this framework. 

• Grad-CAM (Gradient-weighted Class 

Activation Mapping): This approach provides 

heatmaps that show the areas of the MRI images most 

relevant in the model’s decision-making process. By 

visualizing the importance of specific areas of the 

brain in relation to tumor classification, Grad-CAM 

helps clinicians understand what parts of the MRI 

image the model focuses on. 

• LIME (Local Interpretable Model-agnostic 

Explanations): LIME predicts the model’s behavior 

locally, producing interpretable explanations for 

individual predictions. This can help explain why the 

model classified an image into a particular tumor 
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category, providing insights into specific features that 

drove the classification. 

• SHAP (Shapley Additive Explanations): SHAP 

values decompose the model’s prediction into the 

contribution of each feature (e.g., pixel region) to the 

final classification. This global explanation technique 

helps quantify the importance of various image 

regions across the entire dataset. 

Grad-CAM XAI method is incorporated into the model 

evaluation phase, where it provides visual and 

numerical explanations of the model’s reasoning for 

each prediction, enhancing trust and transparency. 
G. EVALUATION METRICS 

The proposed models are evaluated using: 

• Accuracy: Proportion of correctly categorized 

positive and negative instances on brain magnetic 

resonance images. 

• Precision: Correct True Positive (TP) predictions 

per total predicted True Positive (TP). 

• Recall: Correct True Positive (TP) predictions per 

actual True Positive (TP). 

• F1-Score: Harmonic mean of precision metrics and 

recall metrics. 

• Confusion Matrix: A visual matrix of true labels vs 

predicted labels. 

• XAI Explanation Consistency: Analysis of the 

consistency and reliability of explanations across 

different model runs. 

These metrics ensure a comprehensive evaluation 

across all tumor classes and classification challenges. 

The integration of XAI enables robust performance 

benchmarking, model adaptability for real-world clinical 

deployment, and enhanced interpretability, essential for 

gaining clinical acceptance and ensuring patient safety. 

 
IV. EXPERIMENTAL SETUP 

In this study, we evaluate four deep learning (DL) 

models, CNN, VGG16, ResNet50, and InceptionV3, for 

brain tumor detection using a publicly available MRI 

brain tumor dataset. Below are the details of the 

experimental setup, including dataset description, model 

training, and evaluation procedure. 
A. DATASET DESCRIPTION 

The dataset employed in this work is the Brain MRI 

images Dataset, which comprises tagged images of 

brain MRIs, with two primary classes: tumor and non-

tumor. The collection comprises pictures of varied 

resolutions and kinds of MRI scans, e.g., T1-weighted 

(T1W), T2-weighted (T2W). The total count of images is 

7022. The photos were separated into training (80%) 

and testing (20%) groups to make sure that the dataset 

was balanced across the classes. 
B. PREPROCESSING 

Before feeding the MRI images into the models, several 

preprocessing steps were performed: 

• Resizing: All the images were scaled to 224x224 

pixels to satisfy the input needs of the models. 

• Normalization: The pixel values of the images 

were standardized to the range [0, 1] to accelerate the 

training process and increase convergence. 

• Augmentation: To strengthen the durability of the 

models and minimize overfitting, data augmentation 

methods such as random rotation, flipping, and 

zooming were added to the training set. 
C. MODEL ARCHITECTURE AND HYPERPARAMETERS 

A basic convolutional neural network (CNN) model 

consists of 3 convolutional layers, followed by max-

pooling, and a fully connected layer for classification, 

which provides the basis for different models used in the 

framework. Resnet-50, VGG-16, and Inception-V3 

architectures of CNN were used for the comparison: 

• VGG16: A deeper network with 16 layers 

comprised of convolutional layers followed by fully 

linked layers. Pre-trained weights from ImageNet 

were utilized to fine-tune the model (23). 

• ResNet50: A residual network with 50 layers was 

designed to handle the issue of the vanishing 

gradient. It includes skip connections to allow deeper 

models to be trained (24). 

• InceptionV3: A model designed by Google for 

image classification. It uses auxiliary classifiers and 

factorized convolutions, which make it more efficient 

in terms of both speed and accuracy (25). 

The following hyperparameters were used across all 

models: 

• Learning Rate: 0.0001 for all models. 

• Batch Size: 32 images are in a single batch. 

• Epochs: 50 epochs were used to train the model. 

• Optimizer: Adam optimizer with a learning rate 

decay of 0.9. 

• Loss Function: Categorical Cross-Entropy was 

employed as the loss function for multiclass 

classification. 
D. TRAINING AND EVALUATION 

Each model was trained on the training set and 

evaluated on the testing set using several performance 

metrics: 

• Accuracy: The proportion of correctly 

categorized brain magnetic resonance images. 

• Precision: Correct predictions of true positive (TP) 

per total of predicted true positives (TP) and False 

negative (FN). 

• Recall: The correct predictions of True Positive 

(TP) per actual True Positive (TP). 

• F1-Score: Harmonic mean of precision metrics 

and recall metrics. 

• Area Under the ROC Curve (AUC): A measure of 

the model’s ability to discriminate between the 

classes. 

The training was performed on a machine with an 

NVIDIA Tesla V100 GPU, which accelerated the training 

of the models. 
E. EVALUATION METRICS AND VALIDATION 

The models were evaluated using the following: 

• Confusion Matrix: To understand the distribution 

of True Positives (TP), False Positives (FP), True 
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Negatives (TN), and False Negatives (FN) for each 

model. 

• ROC Curve: A graphical representation of the true 

positive rate against the false positive rate, used to 

visualize the performance across different 

thresholds. 

• Loss Curve: To observe the convergence behavior 

and the extent of overfitting during training. 

• Precision-Recall Curve: To assess the balance 

between precision and recall, especially in cases of 

imbalanced datasets. 
F. HARDWARE SETUP 

To effectively train and evaluate the proposed deep 

learning models, a high-performance computational 

environment was utilized. The hardware specifications of 

the experimental setup are outlined below: 

• CPU: Intel Core i9-10900K, 10-core processor 

clocked at 3.7 GHz, providing exceptional single-

thread and multi-thread performance suitable for 

parallel data preprocessing and I/O operations. 

• GPU: NVIDIA Tesla V100, equipped with 32GB of 

VRAM, is a contemporary accelerator suitable for 

deep learning tasks. The Tensor cores significantly 

improve matrix multiplication, hence facilitating rapid 

model training and real-time inference. 

• RAM: 64GB DDR4 memory provides sufficient 

capacity for handling large datasets and many model 

instances throughout the training, validation, and 

testing phases. 

• Operating System: Ubuntu 20.04 LTS, the robust 

and widely used Linux version, provides seamless 

interoperability with prominent deep learning 

frameworks such as TensorFlow, PyTorch, and 

Keras. 

This configuration was used to accelerate training 

cycles and eliminate computing limitations. It also 

facilitates the execution of computationally intensive 

activities such as batch loading high-resolution MRI 

images into memory and finetuning deep convolutional 

networks. The GPU proved crucial in expediting gradient 

updates and backpropagation, hence substantially 

reducing training time. 
G. ACCURACY OVER EPOCHS 

An essential metric of a model’s ability to accurately 

classify data is accuracy. Figure 3 illustrates the 

model accuracy of ResNet50, InceptionV3, and VGG16 

during the training process. All models exhibited a 

positive learning trajectory; however, the performance 

trends varied significantly across architectures. 

By the end of the 10th epoch, ResNet50 achieved 

a peak training accuracy of 98%, outperforming 

InceptionV3 (96%) and VGG16 (95%). This superior 

accuracy is directly attributed to the architectural 

advantage of ResNet50, which incorporates residual 

connections. These connections allow the model to 

learn identity mappings, thus minimizing the vanishing 

gradient issue that commonly restricts deep networks. 

Residual learning allows for deeper architectures 

without degradation in performance, facilitating the 

capture of fine-grained features critical for distinguishing 

between tumor types. In contrast, while InceptionV3 

utilizes inception modules to extract multi-scale features 

and VGG16 uses a consistent convolutional structure, 

both fall short in comparison to ResNet50’s feature 

propagation capacity and representational depth. 

 

FIGURE 3: Accuracy Comparison. 

H. LOSS OVER EPOCHS 

Training loss, derived from the binary cross-entropy 

function, quantifies the discrepancy between predicted 

and actual labels. A declining loss curve signifies 

successful learning. As depicted in Figure 4, all models 

demonstrate a steady decrease in loss over epochs, but 

ResNet50 converged significantly faster and to a lower 

value. 

Initially, all models began with a high loss (0.6), but 

ResNet50’s loss sharply declined to 0.10 by the final 

epoch. In comparison, InceptionV3 and VGG16 

plateaued at higher values of 0.12 and 0.15, respectively. 

This rapid convergence in ResNet50 can be attributed to 

its advanced learning capacity, which stems from both 

depth and residual connections that facilitate effective 

feature reuse and error signal propagation. 

The lower loss indicates better model confidence and 

generalization, reducing the likelihood of overfitting or 

underfitting—a crucial factor in medical imaging, where 

data diversity and feature subtlety are pronounced. 

 

FIGURE 4: Loss over Epochs. 
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I. CONFUSION MATRIX (RESNET50) 

The confusion matrix (Figure 5) presents a thorough 

analysis of classification results by comparing 

anticipated labels versus genuine class labels. For multi-

class issues such as brain tumor classification, it is a 

vital diagnostic tool to assess class-specific model 

performance. 

ResNet50’s confusion matrix reveals a high number of 

True Positives (TP) and True Negatives (TN) across 

all four categories: glioma tumor, meningioma tumor, 

pituitary tumor, and no tumor. The little misclassification 

rate highlights its significant sensitivity (capacity to 

identify actual tumor cases) and specificity (ability to 

accurately differentiate non-tumor instances). 

In therapeutic settings, where false negatives may 

delay treatment and false positives might lead to 

unnecessary interventions, this high level of accuracy is 

very crucial. The reliability of ResNet50’s predictions 

indicates its potential as a trustworthy decision-support 

instrument in radiological diagnostics. 
J. ROC CURVE 

The Receiver Operating Characteristic (ROC) curve 

(Figure 6) illustrates the true positive rate in relation to 

the false positive rate across various categorization 

levels. The classification efficacy of a model is visually 

represented as a curve. 

ResNet50 demonstrated exceptional discriminative 

ability between tumor and non-tumor occurrence with an 

AUC (Area Under Curve) score of 0.96. The ROC curve 

demonstrates robust class separation, remaining far 

above the diagonal baseline despite data imbalance. 

In high-stakes medical applications, such high AUC 

values confirm the model’s capacity to distinguish subtle 

variations in MRI scans, which might be imperceptible to 

the human eye, thereby enhancing diagnostic accuracy. 

 

 
 

FIGURE 5: Confusion Matrix. 

 
FIGURE 6: ROC Curve. 

 
K. PRECISION-RECALL CURVE 

The precision-recall curve (Figure 7) gives insights into 

the trade-off between precision (positive predictive 

value) and recall (sensitivity). It is particularly 

informative in cases of class imbalance, which is 

common in medical datasets. 

ResNet50 maintained a consistently high balance 

between precision and recall throughout the range of 

thresholds. The large area under the curve (AUC) 

indicates that the model sustains high precision without 

compromising recall. This is crucial in a medical 

context, as high recall ensures tumor cases are not 

overlooked, while high precision minimizes the rate of 

false alarms. 

Such robustness makes ResNet50 well-suited for 

deployment in environments where the consequences of 

diagnostic errors are significant, such as oncology 

departments and neurological clinics. 

 

 
 

FIGURE 7: Precision-Recall Curve. 
L. F1 SCORE COMPARISON 

The F1 score, being the harmonic mean of recall and 

accuracy, provides a singular metric for assessing a 

model’s sensitivity to the balance between these two 

measures. ResNet50 achieved the highest F1 score of 

0.92, as seen in Figure 8, followed by InceptionV3 at 
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0.90 and VGG16 at 0.88. 

This result underscores ResNet50’s efficacy in 

addressing complex multi-class classification 

challenges, particularly when several tumor types exhibit 

overlapping visual traits. The equilibrium of its F1 score 

indicates that the model does not disproportionately 

favor one class over another, an essential attribute for 

fairness and equity in medical artificial intelligence 

applications. 

 

FIGURE 8: F1 Score Comparison. 

M. AUC SCORE COMPARISON 

Examining the bar graph (Figure 9) that compares AUC 

ratings further emphasized the efficacy of each model. 

ResNet50 achieved an AUC of 0.96, leading the results, 

followed by InceptionV3 at 0.94 and VGG16 at 0.93. 

 
FIGURE 9: AUC Score Comparison. 

These results validate ResNet50’s reliable 

performance across many evaluation metrics and 

provide substantial evidence of its suitability for clinical 

applications. Its durability and flexibility are shown by its 

elevated AUC, rapid convergence, low misclassification 

rate, and robust precision-recall trade-off. 

 

FIGURE 10: Tumor Localization via Grad-CAM. 

 
We used the Grad-CAM (Gradient-weighted Class 

Activation Mapping) approach to elucidate the decision-

making process of the ResNet18 classification model. 

Grad-CAM superimposes a heatmap over the original 

brain MRI, emphasizing the regions most likely to 

influence the model’s predictions. 

A pre-trained ResNet18 model was used, which was 

modified to perform inference on brain MRI images. The 

model was set to evaluation mode, and Grad-CAM 

visualizations were generated for each input image. 

Specifically, gradients were extracted from the last 

convolutional layer (i.e., ‘layer4.1.conv2‘) relative to the 

predicted class. These gradients were pooled and 

weighted against the corresponding feature maps to 

produce a class-discriminative localization map. 

The resulting heatmaps were resized and 

superimposed on the original MRI scans, revealing 

regions of attention. As shown in Figure 10, the model 

focuses primarily on hyperintense regions commonly 

associated with gliomas, meningiomas, or pituitary 

tumors. In correctly classified cases, the attention maps 

align with tumor regions marked by radiologists, 

validating both the performance and interpretability of 

the deep model. 

V. FINDINGS 

The comparative examination of three state-of-the-art 

deep learning models, ResNet50, InceptionV3, and 

VGG-16, revealed crucial insights about their potential 

for brain tumor classification using Magnetic Resonance 

Imaging (MRI) information. Each model was rated based 

on numerous performance measures that include 

accuracy, training loss, F1score, Area Under the Curve 

(AUC), confusion matrix analysis, precision-recall trade-

off, and convergence speed. 
A. OVERALL MODEL PERFORMANCE 

Among all the models evaluated, ResNet50 

consistently emerged as the superior architecture. 

By the 10th epoch, it achieved a peak classification 

accuracy of 98%, surpassing InceptionV3 at 96% and 

VGG16 at 95%. The residual learning architecture of 

ResNet50 accounts for its remarkable accuracy by 

facilitating deeper feature learning while mitigating the 

risk of vanishing gradients. Among the four tumor types, 

glioma, meningioma, pituitary tumor, and absence of 

tumor, its ability to extract complex and distinctive 

features was essential for their differentiation. 
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B. TRAINING EFFICIENCY AND CONVERGENCE 

BEHAVIOR 

ResNet50 exhibited the most rapid convergence during 

training, therefore reducing the binary cross-entropy 

loss from 0.6 to 0.10 compared to 0.12 for InceptionV3 

and from 0.15 relative to VGG16. ResNet50 is suitable 

for time-sensitive clinical environments where rapid 

model training and retraining are essential, since its fast 

convergence demonstrates excellent learning dynamics. 

The model exhibited few signs of overfitting and 

remained stable across epochs. 
C. PRECISION, RECALL, AND F1 SCORE 

ResNet50 achieved the highest F1 score of 0.92 for 

classification quality, indicating an effective equilibrium 

between recall and accuracy. InceptionV3 and VGG16 

achieved F1 scores of 0.90 and 0.88, respectively. Our 

results validate ResNet50’s robustness in addressing 

class imbalance and atypical tumor classes, which is 

particularly relevant in real-world datasets where these 

issues are prevalent. 
D. DISCRIMINATORY CAPABILITY AND ROC-AUC 

ANALYSIS 

The AUC value of 0.96 for ResNet50 clearly 

demonstrates its discriminative capability. This statistic 

illustrates the model’s efficacy in distinguishing classes 

at certain threshold levels. The reliability of ResNet50 in 

clinical decision-making contexts, particularly when false 

positives or false negatives might have serious 

repercussions, was substantiated by its ROC curve, 

which consistently remained above the diagonal 

baseline. 
E. CONFUSION MATRIX INTERPRETATION 

The confusion matrix of ResNet50 demonstrated 

commendable sensitivity (true positive rate) and 

specificity (true negative rate), indicating minimal 

misclassifications across all four classes. This 

exceptional diagnostic capability indicates the model’s 

suitability for incorporation into a Computer-Aided 

Diagnosis (CAD) system, therefore assisting radiologists 

in accurately identifying brain tumors with little error. 
F. PRECISION-RECALL TRADE-OFF 

ResNet50 exhibited a robust trade-off curve in the 

precision-recall analysis, indicating its ability to preserve 

accuracy while maintaining recall. In medical imaging, 

strong recall ensures the identification of almost all 

tumor cases, while high accuracy minimizes 

unnecessary false alarms that might lead to unwarranted 

therapeutic interventions, making this aspect very 

important. 
G. MODEL EFFICIENCY AND PRACTICAL 

APPLICABILITY 

Despite all three models using pre-trained CNNs and 

transfer learning, ResNet50 yielded a compelling 

combination of efficiency and performance. Despite 

being a more complex network, fine-tuning techniques 

contributed to a reduction in computing expenses. Its 

minimal error rates and high accuracy, coupled with 

rapid training durations, make it an excellent option for 

deployment in real-time, resource-constrained clinical 

settings. 

Table II presents the comparative outcomes across all 

primary performance metrics. 

The findings of this study indicate that ResNet50 is 

the most compelling design for multi-class brain tumor 

classification based on MRI. Its effectiveness across all 

metrics designates it as a reliable and efficacious 

approach for clinical implementation. Its potential as a 

foundational model in forthcoming AI-assisted 

diagnostic systems is underscored by its resistance to 

overfitting, equitable classification across categories, 

and suitability for resource-constrained settings. 

TABLE 2: Performance Comparison of Deep Learning Models for 

Brain Tumor Detection 
 

Metric ResNet50 InceptionV3 VGG16 

Final 
Accuracy (%) 

98 96 95 

Final Loss 0.10 0.12 0.15 
F1 Score 0.92 0.90 0.88 
AUC Score 0.96 0.94 0.93 
Precision-
Recall 

High Moderate-High Modera
te 

Convergence 
Speed 

Fastest Moderate Slower 

Confusion 
Matrix Result 

Excellent 
(few errors) 

Good Good 

 

 
VI. CONCLUSION 

This study conducted a comparative examination of 

three deep learning models, ResNet50, VGG16, and 

InceptionV3, with transfer learning utilizing MRI data for 

brain tumor detection and classification, also used Grad-

CAM the explainable artificial intelligence (XAI) strategy, 

to boost model transparency and interpretability. 

ResNet50 has much superior accuracy, F1-score, AUC, 

and convergence rate compared to the alternatives. 

This may be attributed to its residual connections, which 

provide more efficient gradient propagation and deeper 

representation learning, both crucial in medical image 

processing, where minor differences are significant. 

Future research will aim to enhance the model’s 

generalizability across multi-center datasets with varying 

image collection protocols. Additionally, enhancing 

interpretability for physicians might include the use of 

explainable artificial intelligence (XAI) systems such as 

Integrated Gradiant (IG), DeepLIFT, and Score-CAM. 

Moreover, the model may be further extended for multi-

class classification, including several tumor grades or 

the segmentation of tumor regions and the size of the 

tumor. An alternative approach to facilitate system 

deployment in remote and resource-constrained 

environments is the integration with mobile platforms 

and real-time cloud-based inference engines. 
DATA AVAILABILITY 

The datasets included in this study is combination of 

SARTAJ, Figshare, Br35h, and publicly accessible and 

widely employed in brain tumor detection 1 studies. The 
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dataset is open-source and is used in compliance with 

its respective data usage policies. 

1https://www.kaggle.com/datasets/masoudnickparvar/b
rain-tumor-mri-dataset 
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ABSTRACT  

We present a region-aware, end-to-end motorcycle violation detection pipeline tailored to traffic conditions in 

Punjab, Pakistan, which integrates three YOLOv11-based components into a unified framework: motorcycle 

violation detection (MCVD) for helmet compliance and multi-rider analysis, license plate detection (LPD), and 

license plate character detection (LPCD). The system integrates lightweight object detection, BoT-SORT-based 

tracking, and character-level recognition, supported by a synthetic-toreal adaptation strategy that combines 

large-scale synthetic data with limited real samples. Two specific datasets are published, a 40,000-sample 

synthetic Punjab license plate dataset (PS-LPCD) and a 650-sample real-world dataset (PR-LPCD), which are 

publicly released in order to encourage research development and adaptation to the region. Class consolidation 

enhanced MCVD performance (weighted average F1 score: 0.77) and the LPD model performed at mAP50 = 

0.99. Two-stage fine-tuning on synthetic and real samples allowed LPCD to reach a character accuracy of ≈ 

98% and a full-plate recognition rate of ≈ 90.7%, both surpassing EasyOCR and PaddleOCR, while also 

achieving lower per-plate latency. With a single motorcycle per frame, the sequential pipeline maintains a 

throughput of ≈ 9.5 FPS; the throughput reduces in scenes where there are many motorcycles. These findings 

indicate that synthetic pretraining, together with a small real fine-tuning, can be used to obtain a powerful, scalable, 

and region aware automatic license plate recognition (ALPR) system, which provides a reproducible method for 

detecting traffic violations across a variety of license-plate formats. 

 
INDEX TERMS ALPR, Helmet compliance, License plate recognition, Motorcycle violation detection, 

Multi-rider counting, Punjab, Synthetic dataset, YOLOv11 

 

I. INTRODUCTION 

Motorcycle-related traffic violations are a major 

contributor to road injuries and fatalities worldwide. The 

World Health Organization (WHO) reports that 

motorcyclists account for 21% of all road traffic deaths 

[1]. In Pakistan, motorcycles are a dominant mode of 

transport and are disproportionately represented in 

crash statistics [2], [3], underscoring the need for 

effective, region-aware monitoring and enforcement 

systems. 

Although the previous literature has already generated 

precise approaches to individual tasks such as helmet 

detection [4], multi-rider counting [4], and automatic 

license plate recognition (ALPR) [5], most systems 

address these sub-tasks in isolation. Moreover, reliance 

on generic datasets and off-the-shelf OCR engines (e.g., 

EasyOCR, Tesseract) limits robustness in regions where 

license plate formats and scripts vary. This constrains 

both applicability and reproducibility in real-world 

deployments. 

To fill these gaps, we propose an end-to-end 

motorcycle violation detection pipeline based on 

YOLOv11. We emphasize that this work does not 

introduce new detection architectures or learning 

algorithms. Instead, the novelty lies in a systems-level 

integration of existing state-of-the-art components, 

combined with region-specific dataset design, synthetic-

to-real adaptation, and deployment-oriented evaluation. 

The system integrates three modules: MCVD 

(Motorcycle Violation Detection) for helmet-use and 

multi-rider detection, LPD (License Plate Detection) for 

plate localization, and LPCD (License Plate Character 

Detection) for character recognition. Together, these 

components form a practical, reproducible, and region-

aware motorcycle violation detection pipeline. 
OUR MAIN CONTRIBUTIONS ARE AS FOLLOWS: 

• A unified, end-to-end YOLOv11-based pipeline 

integrating helmet detection, rider counting, and 

ALPR through system-level design. 

• Two new Punjab-specific license plate character 

detection datasets (synthetic and real) released to 

support region-aware ALPR research and 

reproducibility. 

• A lightweight character-level detection approach 

that improves ALPR robustness compared to off-the-

shelf OCR engines. 

• Models trained and evaluated on augmented public 

mailto:mhdatheek136@gmail.com
mailto:anizulfathool@gmail.com
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datasets to ensure both reproducibility and regional 

applicability. 

 
II. RELATED WORK 

Initially, the detection of helmet-use was based on 

handcrafted features and classical classifiers. As an 

example, SVMs were used on the histograms of head 

regions with background subtraction and projection 

profiling [6], moving blob extraction with K-Nearest 

Neighbor classification [7], and combined LBP, HOG, 

and Hough descriptors, achieving an accuracy of 

94.23% [8]. These methods were generally sensitive to 

lighting, occlusion, and crowding. 

Deep learning has enhanced its strength and enabled 

joint tasks. CNN-based classifiers, for example, 

achieved high accuracy (96.6%) and F1-score (94.6%) 

[9]. Various other pipelines, including YOLO-based and 

alternative approaches, have also been applied for 

helmet detection and multi-rider identification [4], [10]–

[15]. Nevertheless, although the above-mentioned 

methods work well in their intended applications, they 

are typically not integrated with the ALPR systems, 

which restricts their use in end-to-end motorcycle 

violation detection pipelines. 

In the case of Pakistan, the research on the topic has 

focused on individual tasks and not on comprehensive 

end-to-end motorcycle violation detection. Deep learning 

models have been successful in identifying the location of 

the helmet on a surveillance video with high accuracy 

[16], [17], while ALPR systems have focused on license 

plate localization, character segmentation, and OCR 

[18], [19]. Motorcycle-based end-to-end pipelines 

involving the detection of helmet violations, multi-rider, 

and region-specific license plate recognition are still 

uncommon. This gap is addressed in our work, where a 

unified framework is proposed, which is specific to 

Punjab, Pakistan. 

Several works outside Pakistan have integrated helmet 

detection with ALPR in end-to-end pipelines. In some 

cases, evaluation relied on proprietary datasets or 

generic OCR systems, and regional plate variations were 

not always addressed [20]–[24]. 

Synthetic data has emerged as a viable solution to the 

scarcity and privacy issues of license plate datasets. 

Template-based methods [25], rendering pipelines [26], 

and diffusion models [27] have shown measurable gains 

in recognition accuracy. Based on such methods, we 

generate a template-based synthetic dataset of 

character-level annotated license plates specifically for 

the Punjab, Pakistan region, complemented with 

manually labeled real images for evaluation. These 

findings, along with benchmarking studies [28], 

demonstrate the viability of synthetic plate generation as 

a reliable supplement to real data. 

 
III. METHODOLOGY 

A. SYSTEM OVERVIEW 

The suggested end to end Motorcycle Violation 

Detection system will be used to monitor helmet 

compliance, multi riders, and license plate recognition. 

The pipeline will be composed of motorcycle detection, 

tracking, license plate detection, character recognition, 

and violation classification as illustrated in Figure 1. 

The detection of motorcycles was conducted with the 

help of the YOLOv11 model that was trained on the 

COCO dataset [29]. To optimize efficiency, the system 

first employs lightweight detection and BoT-SORT 

tracking [30] to identify candidate violation frames where 

motorcycles and license plates are both visible and 

potentially readable. Only these frames are then 

processed with the heavier MCVD YOLOv11m model, 

ensuring a balance between accuracy and 

computational cost. This design prevents violations from 

being logged on unreadable plates, which is essential 

for reliable automated enforcement. 
B. DATASETS AND PREPROCESSING 

1) Motorcycle Violation Dataset (HELMET) 

The HELMET dataset [4] is a widely used benchmark 

for helmet-use and multi-rider detection and was 

adopted for training the MCVD model. It comprises 

91,000 annotated frames with 283,377 labeled object 

instances spanning 36 fine-grained classes. As is typical 

of real-world traffic data, this detailed class structure 

introduces a substantial class imbalance, with several 

safety-critical violations occurring far less frequently 

than compliant riding behaviors. 

To address this imbalance, two complementary 

strategies were employed. First, class consolidation was 

performed to simplify the label space and better reflect 

traffic enforcement practices. The front-child passenger 

(P0) class was removed, and all cases involving three or 

more riders were grouped into a single 

MoreThanTwoRider category, since any rider count 

exceeding two constitutes a violation regardless of 

helmet usage. Second, a targeted sampling approach 

was applied during training, where horizontal flipping 

augmentation was restricted to underrepresented 

classes (those with fewer than 20,000 samples). This 

selectively increases the representation of minority 

classes without distorting the natural distribution of 

dominant categories. 

 
FIGURE 1. Pipeline of the proposed End-to-End Motorcycle Violation Detection 

system, including motorcycle detection, tracking, license plate recognition, and 

violation classification. 

Following consolidation and augmentation, the dataset 

contained 318,131 annotated instances across seven 

violation-relevant classes. The class distributions before 

and after consolidation are provided in Appendix A. 
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The dataset was divided into 70% for training, 10% for 
validation, and 20% for testing. Since the original 
dataset consists primarily of CCTV footage in which 

motorcycles often appear at a distance, near-camera 
close-up views of riders and helmets are 

underrepresented. To address this limitation and improve 
robustness to real-world scale variations, we applied a 

two-step augmentation strategy: 

1) Close-up cropping: Every 10th frame containing 

a motorcycle was cropped with a padding of 0.1 (as a 

fraction of the bounding-box size) to synthetically 

generate near-camera views while preserving 

annotation coordinates. 

2) Super-resolution enhancement: The resulting 

low-resolution close-up crops were enhanced using 

RealESRGAN [31] to recover fine-grained details and 

improve object detectability. 

In addition, mosaic blending was applied to simulate 

dense traffic conditions and improve robustness to 

occlusion and scale variation. 

 
2) License Plate Detection Dataset (UFPR-ALPR) 

In the case of license plate detection, we resorted to the 

UFPR-ALPR dataset that consists of 4,500 annotated 

images that represent various types of vehicles [5]. 

Each annotation included a license-plate bounding box 

and metadata (vehicle type, camera type, lighting 

conditions). We focused on plates that are visible on 

motorcycles and on vehicle types that are relevant for 

LPD. 

To improve regional relevance for Punjab, Pakistan, 

we generated synthetic Punjab-style license plates and 

replaced the original plates in the images while 

preserving plate aspect ratios (single-line vs. double-

line), as shown in Figure 3. This augmentation doubled 

the dataset to 9,000 images. Following the original 

dataset recommendations, the split was 40% training 

(3,600 images), 40% validation (3,600 images), and 20% 

test (1,800 images) [5]. 

Training augmentations for the LPD model included 

mosaic blending, shear, perspective deformation, and 

limited horizontal flipping. This set of augmentations 

simulates viewpoint variation and minor geometric 

distortions while preserving plate legibility. 
3) License Plate Character Dataset (PS-LPCD and 

PR-LPCD) 

To train a robust character-level detector, we created the 

Punjab Synthetic License Plate Character Dataset (PS-

LPCD) and a complementary real-world dataset, the 

Punjab Real License Plate Character Dataset (PR-

LPCD). PS-LPCD contains 40,000 synthetic images 

generated across four Punjab plate templates, while PR-

LPCD comprises 650 annotated crops extracted from the 

PK-Number-Plates-V3 collection [32]. After filtering for 

Punjab templates, 500 samples were reserved for fine-

tuning and 150 for final testing. PSLPCD was split into 

80% for training and 20% for validation. Sample 

synthetic examples are shown in Figure 4. 

Both datasets are freely available for research 

purposes as part of the Punjab Pakistan Synthetic and 

Real License Plate Character Datasets (P-LPCD), 

available at Zenodo 

(https://doi.org/10.5281/zenodo.17182320) [33]. 

PS-LPCD contains 40,000 synthetic images equally 
divided among four Punjab plate templates (front/back × 
old/new; 10,000 images per template). We annotated 37 
classes: digits 0–9, uppercase letters A–Z, and a special 
class “PUNJAB” used to detect decorative or regional 
markers and to filter irrelevant glyphs. Synthetic images 
were randomized with the following augmentations to 
emulate real capture artifacts: 

• Spatial transforms applied with probability 0.7: 
translation ±10 pixels, shear ±15◦, rotation ±15◦. 
• Perspective warp (small magnitude) to simulate 
viewpoint changes. 
• Photometric and environmental noise: dirt, dust, 

Gaussian noise, and blur. 

• Motion blur applied with probability 0.5; kernel size 
n chosen randomly from odd integers in [1, 29]. 
The discrete motion-blur kernel Ki,j is defined as 

 

 
FIGURE 2. Two-stage super-resolution augmentation process. The first stage 

generates synthetic close-up views through cropping, and the second stage 

applies Real-ESRGAN to enhance visual details for improved detection 

performance. 
 

 
FIGURE 3. Synthetic replacement of license plates to adapt the dataset to 

regional characteristics. 

This kernel produces a uniform linear blur across the 

central row (horizontal) or column (vertical), modeling 

motion along the principal axes. 
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FIGURE 4. Sample synthetic license plates from PS-LPCD. 

C. MODEL ARCHITECTURE AND TRAINING 

The suggested system utilizes the models based on the 

YOLOv11 to perform three main tasks, namely, 

Motorcycle Violation Detection (MCVD), License Plate 

Detection (LPD), and License Plate Character Detection 

(LPCD). Two model versions were used: YOLOv11n, a 

small model with real time inference, and YOLOv11m, a 

large model that is designed to achieve the highest 

accuracy possible at the cost of computational 

performance [34]. 

All models were initialized with weights pretrained on 

the COCO dataset [35], a large-scale benchmark 

dataset. Pretraining provides transferable and 

generalized feature representations that improve 

performance across various vision tasks [36]. Task-

specific data preprocessing and augmentation 

strategies were then applied to enhance robustness 

under challenging traffic conditions, including occlusion, 

motion blur, and varied viewpoints. For example, MCVD 

training incorporated moderate mosaic blending to 

improve detection in dense scenes, while LPCD training 

disabled mosaic augmentation and horizontal flips to 

preserve character orientation. The LPD training used a 

mixed augmentation, which consisted of mosaic 

blending, shear, perspective deformation, and restricted 

flips to preserve the geometry of the license plates. In 

addition to these custom settings, all models utilized the 

default augmentation pipeline provided in the YOLOv11 

documentation [29]. 

The training was done on a 64-bit system with an 
NVIDIA RTX 2060 GPU (VRAM: 6GB) and an AMD 

Ryzen 7 4800H CPU (with 8 cores and 16 threads), 
along with 40 GB of RAM, and operated under the 

Windows operating system. Hyperparameters were 
tuned to balance accuracy and inference efficiency. In 

particular, the MCVD model was trained using the SGD 
optimizer with momentum, as the HELMET dataset is 
large and SGD is known to offer better generalization on 

large datasets. In contrast, the LPD and LPCD models 
were trained using the Adam optimizer, since their 

datasets are medium or small in size, where adaptive 
methods such as Adam converge faster [37]. The overall 

training configuration is summarized in Table 1. 

TABLE 1. Training configurations for MCVD, LPD, and LPCD models 

Model Epochs Batch Size Optimizer 

MCVD (YOLOv11n) 20 16 SGD 

MCVD (YOLOv11m) 15 8 SGD 

LPD (YOLOv11n) 50 16 Adam 

LPD (YOLOv11m) 20 8 Adam 

LPCD (YOLOv11n) 20 16 Adam 

All models were trained with an image size of 640 × 640. 

Complete training and validation curves, including 
loss (box, cls, dfl), mAP, precision, and recall for all 
YOLOv11 models, are provided in Appendix B for 
reference and reproducibility. 

In the case of LPCD, domain adaptation was 

performed through a two-step fine-tuning process on the 

Punjab Real License Plate Character Dataset (PR-

LPCD) following the initial training, as shown in Table 1. 

In Stage One, the first eight layers were frozen, and the 

model was trained for 10 epochs with a learning rate of 

1 × 10−5 and a batch size of 8. In Stage Two, only the 

first four layers remained frozen, and training continued 

for another 10 epochs with a reduced learning rate of 1 

× 10−6. This gradual unfreezing approach allowed the 

model to fit well to real-world data and alleviate 

overfitting while retaining the generalizable 

characteristics acquired in synthetic training. 
D. LICENSE PLATE CLASSIFICATION 

The LPCD pipeline includes a license plate layout 
classification step in order to allow the correct 
sequencing of the detected characters, separating 
single-line and double-line plates. This difference is 
essential, as the position of the characters varies 
dramatically across layouts. 

The classification is based on a normalized vertical 
variation measure that is calculated using the bounding 
boxes of the identified characters. Let yi denote the 
vertical center of the ith character, and hi its bounding 
box height. The metric is defined as: 

 

where σy represents the standard deviation of the 
vertical centers, µh the mean character height, and N 
the total number of detected characters. 

Plates where the normalized variation was more than 
0.45 were defined as double-line because the 
characters were more vertically spread. Values below 
this threshold indicated single-line plates. The threshold 
was chosen empirically in steps of 0.05 by comparing 
the accuracy of classification on the PR-LPCD data. 

After classification, single-line plates were read 

sequentially, whereas double-line plates were parsed 

line by line. For double-line plates, a vertical midline, 

computed as the average of all vertical points, separates 

the two lines, which are read independently. Additional 

heuristics were incorporated to improve robustness, 

such as identifying the smaller-sized final two digits of 

the registration year that commonly appear on Punjab 

single-line plates. 

Figure 5 illustrates the process, showing bounding box 

distributions for singleand double-line plates. A vertical 

yellow midline separates the two lines in double-line 

plates, while red dots mark each character’s center, and 

dotted red lines indicate the spread from the midline. 
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FIGURE 5. Normalized Vertical Variations for Single-Line and Double-Line 

License Plates. Red dots indicate character centers, dotted red lines show the 

vertical spread, and the yellow midline separates the two lines in double-line 

plates. 

IV. RESULTS AND DISCUSSION 

A. EVALUATION METRICS 

The performance of the proposed MCVD system was 
evaluated using metrics that reflect both detection 
accuracy and computational efficiency. For object 

detection, the primary metric is mean Average Precision 
at an IoU threshold of 0.5 (mAP@0.5), which quantifies 

the model’s ability to correctly localize and classify 
objects. Formally, for C classes and APc representing 
the average precision for class c: 

 

To provide a stricter assessment of detection 
robustness, mAP averaged over IoU thresholds from 0.5 
to 0.95 in 0.05 increments (mAP@[0.5:0.95]) is 
computed as: 

 

Given the residual imbalance across violation 
categories, the weighted F1-score was used as the 
primary evaluation metric for MCVD to ensure fair 
performance assessment across both frequent and rare 
classes. This is defined as: 

 
where nc denotes the number of true samples in class c 

and F 1c is the F1-score for that class. 
In addition, standard evaluation metrics such as 

accuracy, precision, recall, and F1-score are computed 

to provide additional insights into the system’s 

performance. These are defined as: 

 

 

where TP , FP , FN , and TN represent true 

positives, false positives, false negatives, and true 

negatives, respectively. 

To assess computational efficiency, inference speed 

was measured in frames per second (FPS). Higher FPS 

values indicate faster processing, which is crucial for 

real-time traffic monitoring applications. 

 

 
B. MOTORCYCLE VIOLATION DETECTION (MCVD) 

MODELS 

Three YOLO-based MCVD models were trained to 

investigate the effects of model size and architecture and 

to identify the best-performing model. Their performance 

was also compared with the CNN-MTL baseline (CNN-

based Multi-Task Learning for helmet detection) 

proposed by Lin et al. [4], as shown in Table 2. 

Consolidating the original 36 classes into 7 core 

violation classes significantly improved detection 

performance. YOLOv11n trained on 7 classes 

achieved an mAP@50 of 0.6584, nearly doubling 

YOLOv8n’s 0.3514 trained on all 36 classes. This 

reduction in classes helped reduce label noise and class 

imbalance, thereby boosting accuracy and model focus. 

Notably, even with the same 36 classes, YOLOv8n 

outperformed the CNN-MTL baseline (F1 score 0.70 vs. 

0.673), likely due to the more efficient and advanced 

YOLO architecture. YOLOv11m further improved 

performance, reaching an mAP@50 of 0.7127 and a 

weighted F1 score of 0.77, demonstrating the combined 

benefits of class consolidation and targeted minority-

class augmentation in mitigating class imbalance and 

improving detection robustness. 

For further analysis, the consolidated classes were 

grouped into Non-Violation (DHelmet, 

DHelmetP1Helmet) and Violation (DNoHelmet, 

DNoHelmetP1NoHelmet, DHelmetP1NoHelmet, 

DNoHelmetP1-Helmet, MoreThanTwoRider) categories, 

yielding the weighted average results shown in Table 3. 

These results further illustrate the effectiveness of the 

proposed imbalance mitigation strategies, as minority 

violation classes benefit from improved recall without 

sacrificing precision on dominant non-violation 

categories. 

The models show higher precision, recall, and F1-

scores for compliant rider classes, effectively reducing 

false positives and improving the classification of non-

violators. Inference speed tests on 1,000 random test 

images indicate that YOLOv11m achieves near real-

time performance at approximately 25 frames per 

second (FPS), comparable to YOLOv11n’s ∼27 FPS, 

maintaining efficiency despite increased complexity. 

Despite the strong overall performance, several failure 

TABLE 2. Performance comparison of MCVD models, including YOLO variants and CNN-MTL baseline 

MCVD Model Precision Recall mAP@50 mAP@[50–95] Classes Weighted Average F1 Score 

CNN-MTL [4] – – – – 36 0.673 

YOLOv8n 0.3803 0.3889 0.3514 0.3104 36 0.70 

YOLOv11n 0.6505 0.6157 0.6584 0.5915 7 0.72 

YOLOv11m 0.7096 0.6664 0.7127 0.6517 7 0.77 

mailto:(mAP@0.5


 

26 Volume 03, Issue 2, 2025  

cases were observed in challenging real-world 

scenarios. In highly crowded scenes, riders positioned 

very close to each other can be confused, leading to 

false predictions due to inter-instance occlusion. When 

occlusion occurs with nonmotorcycle objects, the model 

generally remains robust and is able to correctly 

distinguish riders. However, for distant motorcycles, 

headwear such as caps or hats is occasionally 

misclassified as helmets due to limited spatial resolution 

and visual similarity. Representative failure cases are 

illustrated in Figure 6. 

 
FIGURE 6. Sample failure cases of the MCVD model. Annotations A and C 

illustrate misclassifications in highly crowded scenes involving closely spaced 

motorcycles, while B shows confusion between a cap and a helmet for distant 

rider instances. 

In summary, label consolidation, enhanced training 

methods, and tailored augmentations enable YOLOv11-

based MCVD models to deliver superior accuracy, 

precision, and practical deployment readiness, 

outperforming earlier state-of-the-art approaches. 
C. LICENSE PLATE DETECTION (LPD) MODELS 

The proposed LPD YOLOv11 models were evaluated on 

the UFPR-ALPR dataset [5], with results summarized in 

Table 4.  

The lightweight YOLOv11n, trained for 50 

epochs, slightly outperformed YOLOv11m, which was 

trained for 20 epochs, likely due to the longer training 

duration. Both models achieved high precision, recall, 

F1 score, and mAP, demonstrating accurate and well-

localized license plate detection. While Laroca et al. [5] 

achieved a marginally higher recall (98.33% vs. 

97.89%), our models provide complete metric 

coverage and near-perfect localization (mAP@0.5 = 

0.9910). The mAP averaged over IoU thresholds 0.5 

to 0.95 (mAP@[0.5–0.95]) reached 0.8485 for 

YOLOv11n and 0.8295 for YOLOv11m, highlighting 

robust detection across varying localization criteria and 

benefiting subsequent LPCD tasks. 

These results were obtained on an augmented 

UFPRALPR dataset, including synthetic regional plates 

(see Section III-B2), which enhanced dataset diversity 

and emphasized the robustness of our models. 

TABLE 3. Weighted average performance for consolidated violation categories 

Category Precision Recall F1 Support 

Non-violating 

Violating 

0.73 

0.59 

0.86 

0.66 

0.79 

0.63 

42,267 

28,174 

 
TABLE 4. Performance of License Plate Detection (LPD) models on UFPR-

ALPR dataset 

LPD Model Precision Recall F1 Score mAP@0.5 

Laroca et al. [5] - 0.9833 - - 

YOLOv11n 0.9729 0.9789 0.9759 0.9910 

YOLOv11m 0.9601 0.9719 0.9660 0.9846 

D. LICENSE PLATE CHARACTER DETECTION (LPCD) 

MODELS 

The performance of the LPCD model was evaluated on 

both synthetic and real datasets under different training 

regimes, including training solely on synthetic data, 

training solely on real data, and the proposed two-stage 

fine-tuning approach. Table 5 summarizes the 

quantitative results. 

Training exclusively on synthetic data (Experiment 1) 

yielded excellent performance on synthetic validation 

images (mAP@0.5 = 0.9948), demonstrating the 

effectiveness of large-scale synthetic samples for 

learning character features. However, evaluation on 

real data (Experiment 2) revealed a notable 

performance drop, with precision decreasing by 7.90% 

and recall by 14.15%, highlighting the limitations of 

domain shift. 

Using only real samples for training (Experiment 3) 

improved precision on real test data (+2.98% compared 

to Experiment 2) but slightly decreased recall (-3.35%), 

indicating that limited real data captures fewer 

variations. The two-stage approach (Experiment 4), 

where a synthetically trained model was fine-tuned on 

just 500 real samples, achieved the best results. 

Precision increased by 4.19% and recall by 9.22% over 

Experiment 2, while mAP@0.5 improved by 4.46% and 

mAP@[0.5–0.95] by 14.20% (0.8813 vs. 0.7717), 

confirming that synthetic pretraining provides 

transferable features, and modest real fine-tuning 

effectively bridges the domain gap. 

The normalized vertical variation method reliably 

distinguished single-line and double-line plates, 

supporting accurate character sequencing. Overall, the 

LPCD pipeline achieved 98.46% reading accuracy on 

TABLE 5. LPCD Model Performance Metrics under different training experiments 

Experiment Training Data Validation / Test Data Precision Recall mAP@0.5 mAP@[0.5–0.95] 

1 Synthetic Only (PS-LPCD 32k) Synthetic Validation (8k) 0.9948 0.9921 0.9948 0.9546 

2 Synthetic Only (PS-LPCD 32k) Real Test (PR-LPCD 150) 0.9162 0.8517 0.9375 0.7717 

3 Real Only (PR-LPCD 500) Real Test (PR-LPCD 150) 0.9435 0.8232 0.8803 0.7515 

4 Synthetic + Fine-tune on Real 
(PSLPCD 32k + PR-LPCD 500) 

Real Test (PR-LPCD 150) 0.9546 0.9302 0.9793 0.8813 

mailto:(mAP@0.5
mailto:mAP@0.5
mailto:(mAP@0.5
mailto:mAP@0.5
mailto:mAP@0.5
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the 650-image PRLPCD dataset. Failures occurred 

mainly under extreme rotations or shearing (Figure 7), 

where, for example, plate C missed the last character “7” 

as it fell below the midline, whereas plates A and B with 

milder distortions were read correctly as LEC-967-17. 

 

FIGURE 7. Examples of license plates demonstrating correct reading and failure 

cases. 

 

Further analysis of the PR-LPCD real test set (150 

plates) revealed that approximately 78% of recognition 

errors originated from the small-character regions 

inherent to Punjab license plate designs. These regions 

are particularly sensitive to adverse imaging conditions. 
Typical failure cases include environmental 

degradation (LP_0019), where dust caused confusions 
such as ‘5’→‘S’ and ‘0’→‘U’; geometric distortion 
(LP_0332 and LP_0341) due to extreme viewing angles 
combined with low-resolution 

small characters; physical wear (LP_0345), where 

faded printing reduced character contrast; and low-light 

conditions (LP_0401 and LP_0589), leading to 

misclassification among visually similar digits. These 

representative failures are illustrated in Figure 8. 

The predominance of small-character-related errors 

suggests that robustness could be further improved 

through targeted synthetic augmentations (dust, blur, 

perspective warping) and enhanced multi-scale feature 

extraction. 

Comparative evaluation on the 150-image PR-LPCD 

real test set further demonstrates the effectiveness of 

the proposed approach compared with EasyOCR [38] 

and PaddleOCR [39], the latter being based on a PP-

OCR framework with a CRNN-style text recognition 

architecture, as shown in Table 6. 

The proposed LPCD model consistently outperforms 

both general-purpose OCR baselines across all 

evaluation metrics. Compared to EasyOCR, character-

level accuracy improves by 12.60% (from 87.67% to 

98.72%), while fullplate match accuracy increases 

substantially from 33.33% to 90.67%. When compared 

with PaddleOCR, which demonstrates stronger 

character recognition performance (95.84%), the 

proposed method still achieves higher character-level 

accuracy and nearly doubles the full-plate match 

accuracy (49.33% to 90.67%). 

 

 
 

 
FIGURE 8. Representative failure cases from the PR-LPCD test set, 

highlighting typical character recognition errors. Yellow arrows indicate 

incorrectly predicted characters. 

 

 
 

In addition to accuracy gains, the LPCD model 
demonstrates superior computational efficiency relative 
to EasyOCR. Total inference time on the test set is 
reduced by approximately 2.63× (from 53.04 s to 20.13 
s), with average per-plate latency decreasing from 
0.0816 s to 0.0310 s. These results demonstrate that 
task-specific pretraining on synthetic license plate data, 
combined with the proposed double-line classification 
heuristic, yields substantial improvements in recognition 
accuracy while maintaining real-time applicability in 
practical deployment scenarios. 
E. END-TO-END PIPELINE INFERENCE 

Two pipeline configurations integrating MCVD, LPD, 

and LPCD were evaluated on an NVIDIA RTX 2060 

GPU: 

• NNN: Nano variants for all models 

• MMN: Medium variants for MCVD and LPD, Nano for 

LPCD 

Each configuration was executed 5,000 times across 20 
test images to estimate baseline inference speed without 
additional preprocessing. The NNN configuration 
achieved ∼19 FPS, demonstrating real-time capability, 

while the MMN configuration achieved ∼15 FPS, 
reflecting a trade-off between speed and accuracy. 

To evaluate real-world performance, we applied the 

proposed sequential pipeline (see Section III-A) to 

five traffic surveillance videos from Lahore, Pakistan. 

These videos are available in our GitHub repository 

(https://github.com/mhdatheek136/P-LPCD). The results 

are summarized in Table 7. 

 

 

 

TABLE 6. LPCD vs. OCR Baselines Performance Comparison 

Method Character-level Accuracy Full-Plate Match Accuracy 

EasyOCR 0.8767 0.3333 

PaddleOCR 0.9584 0.4933 

LPCD Model 0.9872 0.9067 
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TABLE 7. End-to-end pipeline inference results on traffic surveillance 
videos 

Video Pipeline FPS Motorcycles Detected Crowdedness 

hd1 8.69 1596 1.93 

hd2 8.11 3147 1.78 

hd3 6.97 4181 2.78 

hd4 9.17 1633 1.22 

hd5 6.89 4725 2.67 

The results show a strong dependency between 
crowdedness (average motorcycles per frame) and 
inference speed. With approximately one motorcycle per 
frame (e.g., Video hd4, crowdedness = 1.22), the 
pipeline maintained ∼9 FPS. When crowdedness 
exceeded two motorcycles per frame (e.g., Videos hd3 
and hd5), throughput dropped to ∼7 FPS, revealing a 
near-linear decline in performance as object density 
increased. 

Extrapolation suggests that under conditions of exactly 
one motorcycle per frame, the pipeline would sustain 
approximately 9.5 FPS. In contrast, at ∼3 motorcycles 
per frame, throughput decreases by nearly 25–30%. 
This performance– density trade-off highlights the 
importance of optimizing inference strategies for 
deployment in dense urban environments. 

V. CONCLUSION AND FUTURE WORK 

The paper introduces a full YOLOv11-based 

motorcycle traffic violation detection pipeline, in 

particular, dealing with multi-rider detection, helmet-

usage detection, and automatic license plate recognition 

(ALPR). The system is designed to suit Punjab, 

Pakistan, where motorcycles are a major cause of road 

deaths, and the levels of helmet usage among 

motorcycles are very low. 

Key contributions of this study include the 

consolidation of classes for the MCVD model, achieving 

mAP@50 scores of 0.66 with YOLOv11n and 0.71 with 

YOLOv11m, as well as strong license plate detection 

performance with mAP@50 values approaching 0.99. 

The proposed PS-LPCD synthetic dataset, fine-tuned 

with the PR-LPCD real-world dataset, achieved 0.98 

accuracy on real test sets. Both datasets (PSLPCD and 

PR-LPCD) are publicly available to support future 

research and to provide a reproducible procedure for 

creating region-specific license plate datasets, which is 

particularly useful in scenarios where real-world data is 

limited. Moreover, the normalized vertical variation 

technique that was proposed to differentiate between 

single-line and double-line plates is a lightweight 

alternative to the traditional deep learning methods. To 

provide a powerful video-based analysis, the BoT-SORT 

tracker was added, and the presented sequential 

pipeline could maintain around 9.5 FPS when it was 

applied to the scenes with one motorcycle per frame. 

Several challenges were mitigated using task-specific 

augmentations, particularly the lack of near-camera 

close-up views in CCTV footage, which results in small 

and partially occluded license plates, along with varied 

camera perspectives and limited training data for multi-

passenger cases. However, some limitations remain, 

such as lower efficiency when processing full-resolution 

images, potential identity mismatches in congested 

traffic, reliance on continuously updated synthetic 

datasets to accommodate evolving license plate 

formats, and difficulty in detecting small character 

regions on Punjab license plates under extreme 

conditions. 

The following directions are suggested for future 
research: 

(i) the use of regions of interest (ROIs) and rider-

passenger relations modeling to enhance efficiency; (ii) 

the separation of nearby riders by the use of 

segmentation or pose estimation; (iii) the use of 

lightweight language models to refine the predictions of 

character sequences in the license plates;(iv) Controlled 

ablation studies to assess the impact of synthetic close-

up augmentation on MCVD performance and the 

influence of synthetic data volume on LPCD accuracy; 

(v) parallelization of the ALPR process to enhance 

inference speed in a real-world application; and (vi) 

Developing specialized detection strategies for small 

character regions, particularly on Punjab license plates, 

to improve robustness under challenging conditions. 

These enhancements are meant to improve the strength, 

accuracy, and scalability of the proposed system to be 

used in large-scale traffic monitoring and enforcement 

applications. 
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APPENDIX A CLASS DISTRIBUTION BEFORE AND AFTER 

CONSOLIDATION OF THE HELMET DATASET 

This appendix shows the HELMET dataset’s class 
distribution before and after consolidation. Initially 
comprising 36 fine-grained classes (Figure 9), the 
dataset was merged and augmented into 7 broader 
categories (Figure 10) to reduce class imbalance. 
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FIGURE 9. Class distribution of the HELMET dataset before consolidation (36 

classes). 

 

 
FIGURE 10. Class distribution of the HELMET dataset after consolidation and 

augmentation (7 classes). 

 

APPENDIX B TRAINING AND VALIDATION CURVES 

This appendix provides the full training dynamics for all 

YOLOv11 models used in MCVD, LPD, and LPCD 

experiments. Each figure shows training and validation 

loss curves (box, cls, dfl) along with validation mAP, 

precision, and recall over epochs. 

 
 

FIGURE 11. Training and validation curves for MCVD (YOLOv11n). 

 
FIGURE 12. Training and validation curves for MCVD (YOLOv11m). 

 
FIGURE 13. Training and validation curves for LPD (YOLOv11n). 

 

 
FIGURE 14. Training and validation curves for LPD (YOLOv11m). 

 

 
FIGURE 15. Training and validation curves for LPCD (YOLOv11n). 
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Abstract 

Dense breast tissue is a major challenge to screening of breast cancer since it covers about 40-50% of the breast 

and hides the lesions in traditional mammography. This weakness requires the efficient use of additional imaging 

modalities for high-risk patients. The following paper is a comparative analysis of the major supplemental imaging 

techniques, such as ultrasound, Magnetic Resonance Imaging (MRI), Contrast-Enhanced Spectral Mammography 

(CESM), Digital Breast Tomosynthesis (DBT), and AI-assisted mammography. A literature review was conducted 

in databases like PubMed, ScienceDirect, and Google Scholar, and peer-reviewed articles published since 2016, 

and those that concentrated on breast cancer screening in high-density breasts were assessed. The review is a 

confirmation of the role that mammography plays at its core, but indicates the improved detection of cancer with 

the help of supplemental ultrasound and MRI. Importantly, CESM has a similar diagnostic potential as MRI and 

the practical advantages of lower costs and shorter scan time. DBT enhances clear images by reducing overlap 

between tissues, and it effectively reduces the rate of recollection among patients. Moreover, AI-assisted 

mammography is one of the essential developments that will raise the detection of cancer in dense breasts and may 

even prevent the use of auxiliary procedures. The results strongly reflect the need of implementation of tailored 

and risk-based screening methods where such advanced add-on imaging technologies are combined with Artificial 

Intelligence, which is likely to elevate screening accuracy, clinical outcomes, affordability, and ultimately make a 

significant contribution to lowering the rates of mortality of breast cancer. 

INDEX TERMS: Breast Density, Breast Cancer Screening, Supplemental Screening Strategies, Breast 
Cancer Risk, Ultrasound, MRI, CESM, DBT, AI, Risk-Stratified Screening, Diagnostic Performance, 
Cost-Effectiveness, MRI (AB-MRI) 

I. INTRODUCTION 

Well-planned screening helps to increase the survival 
rates of breast cancer. It remains the most widespread 
type of cancer in women worldwide, and early diagnosis 
has a considerable impact on the results. One of the 
determinants that influences the risk of cancer and the 
accuracy of the screening process is the breast density, 
or the percentage of fat to fibroglandular tissue that is 
seen on the mammogram. It is also advised that if women 
go through mammographic screening annually, the 
chances of death by breast cancer are minimized by 20 
percent [1]. As suggested by previous studies, around 40-
50% of women over the age of 40 have dense or 
heterogeneous breasts, which are further classified as C 
and D in the Breast Imaging Reporting and Data System 
(BI-RADS) [2].  

The masking effect of highly dense breast tissue can 
significantly reduce the sensitivity of conventional 
mammography, hindering early cancer detection [3]. 
Supplemental modalities, such as contrast-enhanced 
spectral mammography (CESM), have been investigated. 
Meta-analyses indicate that CESM provides high 

specificity and sensitivity in identifying lesions hidden in 
dense breasts [4]. Magnetic resonance imaging is also 
one of the most sensitive imaging techniques; a recent 
study evaluated MRI and found its sensitivity and 
specificity to be higher than that of mammography [5]. 
The accuracy, specificity, and recall rate of 
mammography with supplemental ultrasonography were 
higher than those of mammography alone [6]. Digital 
breast tomosynthesis (DBT) offers superior lesion 
visualization than conventional mammography, as 
suggested by certain previous studies. However, its 
advantage for women with highly dense breasts is still 
unclear [7]. To improve early detection and provide the 
best individualized treatment, it is necessary to determine 
the best screening method for women with dense breasts 
[1]. 

According to previous studies, millions of women are 
diagnosed with breast cancer each year. It is also noted 
that breast cancer continues to be one of the leading 
causes of female mortality, with hundreds of thousands 
of them dying from the disease annually [8]. Various 
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screening guidelines are employed in order to diagnose 
breast cancer at an early stage. The protocols enhance 
survival rates during breast cancer patients with dense 
breast since they provide less invasive treatments [9]. 
Conventional mammography is still the most common 
screening approach available because it is easily 
accessible and can effectively reduce the rate of mortality 
[10]. It is very insensitive in women who have dense 
breasts and brings about a high risk of cancer by hiding 
lesions and abnormalities [11]. Researchers are 
investigating personalized screening by taking individual 
risk factors and breast density into account for detecting 
breast cancer early [12]. Other screening tools, including 
ultrasound, CESM, MRI, and AI mammography, are 
being explored because mammography doesn’t function 
well for dense breasts [6, 13]. Physicians get help from 
these techniques in customizing screening to each 
woman’s unique requirements [1].  

 

Figure 1: BI-RADS breast density categories shown from low to high density [3]. 

The proportion of fibroglandular tissue to fatty tissue 
seen on a mammogram is known as breast density [11]. 
Breast density is divided into four categories based on the 
American College of Radiology’s Breast Imaging 
Reporting and Data System (BI-RADS): A–almost 
entirely fatty, B–diffuse fibroglandular, C–
heterogeneously dense, and D–extremely dense [14]. 
Dense breasts (categories C or D) not only make tumors 

harder to detect on mammography but also increase the 
breast cancer risk [3]. The phenomenon "masking effect” 
makes abnormalities harder to detect because both 
tumors and dense tissue appear white on mammograms. 
It is common practice to use additional imaging 
techniques to address the limitations of mammography. 
Reconstructions of three-dimensional images used in 
digital breast tomosynthesis can improve lesion visibility 
and reduce recall rates [7]. In terms of diagnostic 
accuracy comparable to that of MRI, Contrast-Enhanced 
Spectral Mammography (CESM) allows vascular 
assessment of lesions by combining low- and high-
energy imaging [4]. Ultrasound (US) is a safe imaging 
method because it does not use radiation and can detect 
tumors in women with dense breasts that mammography 
might miss, despite being dependent on the operator’s 
skill [15]. Magnetic resonance imaging (MRI), because of 
its high cost and restricted availability, is still the most 
sensitive method for detecting breast cancer, especially 
in women who are at high risk [5]. Sensitivity indicates 
how well the test detects women who actually have the 
disease, while specificity refers to how well the test 
detects women who do not have the disease. High 
specificity minimizes false positives and unnecessary 
follow-ups, while high sensitivity allows for early 
identification, particularly in women with dense breasts. 
Such definitions align with previous research assessing 
breast density, cancer risk, and screening performance 
[4]. 

Supplemental imaging techniques (MRI, CESM, DBT, 
and ultrasound) have been independently evaluated for 
breast screening in women with high breast density. 
During the past few years, several large-scale trials and 
systematic reviews have shown improvements in 
detection rates over mammography alone [13]. Studies 
indicate that in many dense-breast cases, contrast-
enhanced spectral mammography (CESM) can achieve 
sensitivity similar to MRI; its specificity and cost vary 
significantly among healthcare settings [16]. In breasts 

Table 1. PICOS framework for inclusion and exclusion criteria 

Component Inclusion Criteria Exclusion Criteria 

Population (P)  Women with heterogeneously or extremely dense 
breast tissue and negative mammography results 

Studies involving non-
dense breasts, male 

patients, or non-human 
studies 

Intervention/Exposure (I) Use of supplemental imaging techniques, such as 
contrast-enhanced spectral mammography (CESM), 

digital breast tomosynthesis (DBT), magnetic resonance 
imaging (MRI), and ultrasound (US) 

Studies limited to 
standard 2D 

mammography 

Comparison (C) Compared with standard 2D mammography or between 
different supplemental techniques 

Studies without a 
reference standard 

Outcomes (O) Diagnostic performance matrices that are reported 
include cost-effectiveness, sensitivity, specificity, recall 

rate, PPV, and cancer detection rate (CDR) 

Studies lacking 
diagnostic outcomes 

Study Design (S) Prospective or large retrospective cohort studies, cross-
sectional studies, and meta-analyses of diagnostic 

accuracy (2016-2025) 

Single-case reports, 
editorials, and small-

sample studies 

Other Criteria Peer-reviewed English publications between 2016 and 
2025 

Non-peer-reviewed 
publications in other 
languages or before 

2016 
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with different densities, digital breast tomosynthesis 
(DBT) has been shown to reduce recall rates and 
enhance lesion visibility; however, the further advantage 
for highly dense tissue is still less certain [7]. AI-assisted 
mammography can also be used to eliminate the need for 
additional mammography, with sensitivity and specificity 
comparable to those of supplemental ultrasound. 
Furthermore, these advancements from standard 
screening methods to personalized techniques mainly 
focus on the early detection and prevention of breast 
cancer [6]. Recent studies also show that using several 
screening modalities without specific guidelines for when 
and how often to apply those increases the number of 
false positives and incorrect diagnoses [6]. Few studies 
have comprehensively evaluated key supplemental 
imaging modalities across different settings and dense-
breast populations to establish an optimal balance 
between their benefits and risks [17]. The absence of 
comprehensive long-term outcome data, including 
interval cancer incidence, stage at diagnosis, and 
mortality, limits understanding of its real-world impact [2]. 
Furthermore, many proposals may not be practical 
worldwide because the limited resources of low- and 
middle-income regions were not properly taken into 
consideration [12]. To incorporate the most recent 
studies, compare diagnostic performance, analyze risks, 
and assess feasibility across settings for women with 
dense breasts, a thorough synthesis is necessary. This 
review assesses the diagnostic efficiency and cost-
effectiveness of supplemental screening modalities, 
including digital breast tomosynthesis (DBT), ultrasound 
(US), magnetic resonance imaging (MRI), contrast-
enhanced spectral mammography (CESM), and AI in 
women with dense breasts and negative mammogram 
reports from previous studies. It also looks for research 
gaps to provide risk-based ideal screening methods. 

Research Questions (RQs): 
RQ1: What are the current challenges in breast 
density assessment? 
RQ2: How do supplemental imaging modalities 
compare in detecting breast cancer in dense 
breasts?  
RQ3: In what ways do several imaging modalities 
affect diagnostic performance? 

II. METHODOLOGY 

The central focus of this review was on systematically 
examining supplemental screening techniques for 
women with an elevated risk of breast cancer who have 
dense breast tissue. In accordance with PRISMA 
(Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses) principles, the review was conducted, 
however, no quantitative synthesis was performed, and 
the review was not registered prospectively in 
PROSPERO. Further, a transparent and organized 
methodology was applied to ensure integrity throughout 
the review process.  
A. Search Strategy 

Information Sources: A comprehensive search was 
conducted to identify recent papers and relevant studies 
published between August 2016 and July 2025. PubMed, 
PubMed Central (PMC), ScienceDirect, and Google 

Scholar from widely accessible digital libraries were used. 
Specialized databases such as Embase and Cochrane 
were not part of the search strategy due to a lack of 
access and resource limitations. All search decisions and 
limitations were explicitly documented to maintain 
transparency. 
Search Query: To identify up-to-date research, a 
comprehensive search was carried out by exploring 
selected databases. Medical Subject Headings (MeSH) 
and keyword terms such as “dense breasts”, 
“supplemental imaging techniques”, “contrast-enhanced 
spectral mammography”, “digital breast tomosynthesis”, 
ultrasound”, “magnetic resonance imaging”, and artificial 
intelligence” were used in the search strategy. 
Boolean operators AND, OR, and NOT were used to 
narrow down the search results. This combination aided 
in the screening of human subject-focused research for 
high-risk women with dense breasts. The search method 
utilized the following aspects of a structured Boolean 
expression: (“dense breast” OR “breast density”) AND 
(“breast cancer screening” OR “screening 
mammography”) AND (“ultrasound” OR “magnetic 
resonance imaging” OR “MRI” OR “digital breast 
tomosynthesis” OR “contrast-enhanced spectral 
mammography” OR “CESM”) NOT (“animal” OR “case 
report”). 
Other Search Methods: To ensure comprehensiveness, 
backward and forward snowballing were employed to 
review the reference lists of the included publications and 
related reviews. This review does not include grey 
literature, such as abstract-only research, conference 
proceedings, and other non-peer-reviewed data. 
B. Eligibility (Inclusion/Exclusion) Criteria:  

In accordance with the population, intervention, 
comparison, outcomes, and study design (PICOS 
framework), which is outlined in this table, articles were 
screened using specified inclusion and exclusion criteria: 
C. Study Selection Process:  
The selection of the study complied with the transparency 
and reproducibility requirements of the PRISMA 
guidelines. EndNote software was used to import 
references from PubMed, Google Scholar, 
ScienceDirect, and PMC for reference management and 
to prevent duplication. In the studies, screening was 
conducted in two stages. In the first step, all titles and 
abstracts were reviewed by two independent reviewers 
using PICOS-based eligibility criteria. When any 
differences could not be resolved through discussion, a 
third reviewer was brought in to make the final decision. 
A second round of review was conducted by the same 
reviewers who independently examined the full texts of all 
possibly qualifying articles. At the full-text stage, reasons 
for exclusion were carefully noted. To maintain uniformity 
and transparency, both stages were screened using the 
same criteria. In the final synthesis, only studies that met 
all inclusion criteria after reviewer agreement were 
included. 
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PRISMA flow diagrams were created to describe the 
process of identifying, screening, determining eligibility, 
and including participants. Using database searches and 
supplementary sources, 100 records were discovered, of 
which 90 were found through database searches and 10 
by searching supplementary sources. There were only 30 
records left for title and abstract screening after the 
duplicates were removed. As a result of this stage, 70 
records were excluded because they did not meet the 
eligibility requirements. In total, 22 full-text publications 
were reviewed. Among these publications, 8 were 
removed due to insufficient methodological relevance or 
the absence of the complete text. There were 22 papers 
that met all criteria for inclusion in the final qualitative 
synthesis. As shown in Figure 2, the PRISMA flow 
diagram provides a visual representation of the numerical 
breakdown of each stage in order to ensure 
methodological transparency and reproducibility. 

 
Figure 2: PRISMA flow diagram for study selection 

The 22 included papers consist of 10 reviews or expert 
guidelines published between 2016 and 2025, 9 cohort 
studies published between 2016 and 2024, and 6 
systematic reviews/meta-analyses published between 

Table 3. Summary of risk-of-bias assessment of the included studies. 

Ref 
No. 

 Author Name Study Design Tool Used Overall Risk of 
Bias 

[1] Mann et al.  Recommendation/Expert Guidelines QUADAS-
2 

Moderate 

[2] Mokhtary et al. Systematic Review & Meta-analysis CASP High 

[3] Nissan et al. Narrative Review CASP Moderate 

[4] Liu et al. Systematic Review & Meta-analysis CASP Low 

[5] Sitges et al. Narrative Review CASP Moderate 

[6] Lee et al. Retrospective Study NIH High 

[7] Raichand et al. Systematic Review CASP Moderate 

[8] Bray et al. Descriptive Epidemiological Study QUADAS-
2 

Low 

[9] Marmot et al. Independent Review QUADAS-
2 

Moderate 

[10] Tomlinson-Hansen 
et al. 

Narrative Review NIH High 

[11] Boyd et al. Observational Cohort NIH Moderate 

[12] Bertsimas et al. Cohort Observational Study NIH High 

[13] Abu Abeelh et al. Systematic Review CASP High 

[14] Kim et al. Cohort Study NIH Moderate 

[15] Vourtsis et al. Cohort Observational Study NIH Low 

[16] Daniaux et al. Systematic Review  CASP Moderate 

[17] Tran et al. Meta-analysis CASP Low 

[18] USPSTF et al. Clinical practice guideline (USPSTF 
recommendation). 

QUADAS-
2 

Moderate 

[19] Tan et al. Retrospective observational study NIH Moderate 

[20] Mansour et al. Retrospective observational study CASP High 

[21] Shermis et al. Cohort Study NIH High 

[22] Richman et al. Observational study NIH Moderate 

Table 2. Summary of included studies and their characteristics 

Study Design Number of 
Studies 

Publication 
Years 

References 

Systematic Reviews / Meta-
analyses 

6 2021–2024 [2], [4], [7], [13], [16], [17] 

Cohort Studies 7 2016–2024 [6], [11], [12],  [14], [15], [19]- 
[22] 

Reviews / Expert Guidelines 10 2016–2025 [1], [3], [5], [8], [9], [10], [18] 

Total / Overall 22 2016–2025 [1]–[22] 
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2021 and 2024. Overall, the studies included a wide 
spectrum of evidence, from primary research to expert 
opinions. Table 2 describes a summary of the study's 
design, number of studies, years of publication, and 
references: 
D. Data Extraction and Data Items 
A structured Excel sheet was used to collect data from 
selected studies. It was mainly employed to accurately 
analyze the studies, ensuring accuracy, consistency, and 
comparability of the diagnostic performance of different 
supplemental modalities. The primary findings and 
limitations of these modalities were also recorded. A 
narrative synthesis was used to compare and summarize 
the diagnostic accuracy of different imaging techniques in 
an organized way. The data extraction strategy and 
synthesis protocols were used to accurately compare 
positive predictive value (PPV), recall rate, sensitivity, 
specificity, and cancer detection rate (CDR) from the 
available studies. 
E. Risk of Bias (Quality) Assessment 
This review carefully evaluated all included studies using 
different tools to assess their quality. The tools used 
included the QUADAS-2 tool, the CASP checklist, and 
the NIH Quality Assessment Tool were used to examine 
diagnostic accuracy studies, systematic reviews and 
meta-analyses, and observational studies, respectively. 
These tools were also used to evaluate methodological 
quality and possible risk of bias. After evaluation, all 
studies were categorized as having a low, moderate, or 
high risk of bias to guide the overall discussion. These 
ratings were then used to give greater importance to 
studies with stronger and more trustworthy 
methodologies. Table 3 summarizes the methodological 
characteristics of the included studies. 

III. RESULTS 
A. Synthesis of Results 

The synthesis of results focuses on key aspects of breast 
screening in women with dense breast tissue. It further 
summarizes the results from 22 studies included in the 
review. Dense breasts not only increase the risk of breast 
cancer but also make it more difficult for mammography 
to detect abnormalities. MRI and CESM demonstrate the 
highest sensitivity among the imaging modalities 
assessed, whereas ultrasound and AI-assisted imaging 
provide supplementary support for identifying lesions that 
mammography might miss. Patient knowledge, medical 
recommendations, and accessibility substantially 
influence adherence. By combining multimodal screening 
methods, early detection may be enhanced, and the long-
term outcome may be improved, permitting less 
aggressive treatment and reducing overall health-care 
costs. The diagnostic performance of several modalities 
was compared using a narrative synthesis. The following 
metrics are reported: sensitivity, specificity, positive 
predictive value (PPV), and cancer detection rate (CDR). 
Qualitative findings were supplied in cases where 
quantitative data were not available. As shown in Table 
3, the narrative synthesis of diagnostic performance in 
different modalities was summarized. 
 

Previous studies consistently identify several key 
challenges for the accurate assessment of breast density. 
Due to its ability to obscure lesions, increase false-
negative results, and complicate early cancer detection, 
dense fibroglandular tissue lowers mammographic 
sensitivity [1], [11]. Variations in imaging methods and 
subjective interpretation of BI-RADS classification also 
affect breast density evaluation, resulting in uneven 
categorization among readers and institutions [6], [20]. 
Furthermore, single-point measures are not accurate for 
long-term risk assessment because breast density varies 
with age and hormonal factors [2], [14]. Volumetric and 
AI-based approaches still need to be validated before 
being used in clinical settings, considering their potential 
to standardize evaluation [19], [20]. 
Efficacy of Supplemental Screening Modalities: 
A previous study showed that women who have very 
dense breasts need to have additional screening since 
they are likely to develop breast cancer and have lower 
mammography sensitivity. In women who are 
premenopausal or whose breast density changes quickly, 
mammography alone may miss malignancies in dense 
tissue [1], [2]. Combining ultrasound with mammography 
as an additional imaging modality increases detection 
rates, particularly for small and node-negative cancers 
[6]. Several studies suggests that breast MRI monitoring 
at longer intervals may be beneficial for women with 
thicker breasts, although the ideal frequency is still being 
researched [1]. Contrast-enhanced spectral 
mammography (CESM) offers high sensitivity and 
specificity and detects problems that traditional 
mammography may miss [4]. Digital breast 
tomosynthesis (DBT) increases the early detection rates 
of cancers in dense breast tissue. In contrast to 
conventional mammography, it also decreases recall 
rates [7]. AI-assisted imaging can be used in conjunction 
with 3D automated breast ultrasonography. It also 
reduces false negatives and increases early detection by 
enhancing mammographic analysis [19]. A woman with 
dense breasts who undergoes mammography 
sometimes shows a negative mammogram. To improve 
visibility and detection accuracy, molecular breast 
imaging provides a useful answer to the clinical problems 
of detecting cancer [21]. Personalized screening 
methods, which are designed around each patient’s 
particular risk profile and tissue characteristics, are 
supported by previous studies. These methods aim to 
detect minor alterations sooner and provide more 
focused recommendations [12]. 
Predictors of Adherence to Screening Protocols: 
Healthcare professionals provide essential 
recommendations that include practical considerations 
such as accessibility, cost, and insurance coverage. 
These factors also play a key role in determining a 
patient’s involvement in supplemental imaging [13]. 
When women clearly understand the risks of dense 
breasts and the limitations of mammography in hiding  
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most of the lesions, they are more likely to participate in 
supplemental screening programs other than 
mammography [3]. Public awareness campaigns and 
follow-up programs are organized. They have been 
effective in encouraging people’s long-term adherence to 
recommended screening protocols [5]. 
Long-Term Outcomes and Cost-Effectiveness:  
The cost-effectiveness in this section is discussed in a 
theoretical manner, because no quantitative economic 
study (ICER/QALY) has been performed. Supplemental 
screening techniques, especially MRI, CESM, and 
ultrasound, allow for early detection and can help reduce 
death rates when compared to mammography alone [1], 
[4]. Due to the higher initial costs of MRI and CESM, a 
problem arises that further necessitates the personalized, 
risk-based screening methods combining 
mammography, ultrasound, and AI-assisted imaging, 
which are cost-effective and reduce the incidence of 
interval cancers and long-term treatment expenses [12], 
[17], [19]. Using several methods further improves patient 
outcomes through early detection. It may reduce the need 
for aggressive therapies and allow for less invasive 
procedures, such as breast-conserving surgery rather 

than mastectomy [5], [16]. To maximize healthcare by 
improving diagnostic accuracy and reducing needless 
treatment and follow-ups is ensured by multimodal 
imaging tailored to each patient’s risk profile, which 
maximizes diagnostic accuracy and minimizes needless 
treatment and follow-ups [7], [21]. Continuous adherence 
to supplemental screening is necessary for achieving 
such therapeutic advantages since non-compliance can 
compromise the ability of these strategies in lowering 
mortality and medical expenses [18]. 
B. Risk of Bias within Studies 

The majority of the 22 studies were rated as being of 
moderate to high quality and made up the basis of this 
review. The high-quality studies with strong 
methodological rigor were systematic reviews and meta-
analyses as demonstrated by thorough literature 
searches and consistent reporting of their findings [2], [4], 
[7], [13], [17]. Most cohort studies were prospective and 
had explicit inclusion criteria. However, several had small 
sample numbers or insufficient follow-up data [6], [14]-
[16], [19], [21], [22]. Although reviews and expert 
suggestions were comprehensive, they were sometimes 
constrained by unclear search methodologies and varied  

Table 3: A narrative synthesis of the diagnostic efficacy of screening methods for breast cancer in women with dense breasts 

Screening 
Modalities 

Sensitivity Specificit
y 

Cancer Detection Rate 
(CDR) 

Positive 
Predictive Value 

(PPV) 

References 

2D 
Mammography 

Sensitivity is 
lower due to 
dense tissue 

masking 

Moderate 
specificity 

CDR is lower in dense 
breasts 

PPV is lower due 
to missed cancers 

[8], [9], [11] 

Digital Breast 
Tomosynthesis 

(DBT) 

Improved 
sensitivity 

compared to 2D 
mammography 

Slightly 
higher 

Specificity 
than 2D 

mammogr
aphy 

A moderate increase in 
CDR is observed 

Improved PPV 
with reduced recall 

rates 

[7], [22] 

Ultrasound 
(HHUS/ABUS) 

High sensitivity Variable 
specificity 

Improved CDR rate when 
combined with 
mammography 

Moderate PPV; 
may decrease with 

increased false 
positives 

[6], [15], [19] 

Magnetic 
Resonance 

Imaging (MRI) 

Higher 
sensitivity than 
other screening 

modalities 
(>90%) 

Moderate 
specificity, 
approxima
tely (70–

85%) 

Highest CDR among all 
modalities 

High PPV, 
especially for 

invasive cancers 

[1], [5], [13] 

Contrast- 
Enhanced 
Spectral 

Mammography 
(CESM) 

High sensitivity, 
approximately 

(85–90%)  

Moderate 
specificity, 
approxima
tely (75–

85%) 

CDR is Comparable to 
that of MRI; higher than 

2D mammography 

Moderate to high 
PPV  

[3], [4], [16] 

Molecular 
Breast Imaging 

(MBI) 

High sensitivity, 
approximately  

(80%) 
 

Moderate 
specificity, 
approxima
tely (80–

85%)  

Detects additional 
cancers missed by 

mammography 

Comparable to 
ultrasound; 

moderate PPV 

[21] 

AI-Based 
Multimodal 

Systems 

High sensitivity, 
approximately  

(85%) 

Maintains 
or slightly 
improves 
specificity 

CDR improvement when 
integrated with 

mammography or 
ultrasound 

Improved PPV by 
reducing missed 

lesions 

[6], [19], [20] 
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study populations [1], [3], [5], [8], [12], [18], [20]. Common 
methodological limitations in all of the included studies 
were variability in breast density classification, study 
population heterogeneity, variations in imaging 
procedures, and limited sample sizes in certain cohort 
studies. 

IV. DISCUSSION 
A. Summary of Evidence 

This review evaluated breast cancer screening 
techniques for women with dense breast tissue. This 
study combined data from 22 studies. Mammographic 
breast density was consistently found to be a significant 

limitation of mammography due to its lower sensitivity and 
a strong independent risk factor for breast cancer across 
all studies [1], [11], [14]. In comparison to mammography 
alone, other imaging modalities, including digital breast 
tomosynthesis (DBT), contrast-enhanced spectral 
mammography (CESM), magnetic resonance imaging 
(MRI), ultrasound (US), molecular breast imaging (MBI), 
and artificial intelligence AI-assisted tools, showed better 
detection rates in dense breasts [4]-[7], [13], [16], [17], 
[21]. The highest sensitivity was obtained by MRI and 
CESM, with MRI exhibiting better lesion characterization 
and CESM emerging as a viable substitute in situations  

Table 4: Comparison of key studies that assessed various methods for screening for breast cancer in women with dense breasts.  

Study 
(Ref.) 

Population/ 
Setting 

Modality/ 
Intervention 

Main Findings Strengths Limitations 

Liu J et al. 
[4] 

Women getting 
their breast 
evaluation 

Contrast- 
Enhanced Spectral 

Mammography 
(CESM) 

CESM 
demonstrates 

good sensitivity 
and specificity 
comparable to 

MRI. 

Large data pool; 
efficient meta-

analysis. 

Varying 
protocols; 

possible bias. 

Sitges C & 
Mann RM 

[5] 

Extremely dense 
breasts in women 

Breast Magnetic 
Resonance 

Imaging (MRI) 
screening 

MRI increased 
cancer detection 
with a moderate 

recall rate. 

Concentrated on 
the dense-breast 
group; updated 

data. 

High cost; limited 
availability. 

Lee SE et 
al. [6] 

Women with dense 
breasts 

Mammography vs. 
Artificial 

Intelligence vs. 
Ultrasound 

AI and US 
enhanced 

detection over 
mammography; 
AI accuracy was 
comparable to 

that of 
radiologists. 

Direct tools 
comparison: 

practical 
significance. 

Retrospective; 
small sample. 

Raichand S 
et al. [7] 

Dense-breast 
women with added 

risk factors 

Digital Breast 
Tomosynthesis 

(DBT) 

Comparing DBT 
to 2D 

mammography, 
the first method 

increased 
detection but 

reduced recalls. 

Extensive 
review; multiple 

populations 
included. 

No long-term 
outcomes. 

Abu 
Abeelh E & 
AbuAbeile

h Z [13] 

Women with dense 
breast tissue 

Mammography, 
Ultrasound, MRI 

MRI was the most 
sensitive, 

followed by US 
and 

mammography 

Clear 
comparative 
synthesis. 

Few studies; 
varied methods. 

Daniaux M 
et al. [16] 

Newly diagnosed 
breast cancer 

patients 

Contrast-
enhanced Spectral 
Mammography(CE

SM) vs 
Mammography, 

US, MRI 

CESM accuracy 
is similar to MRI 

and more 
accurate than US 
or mammography 

Detailed 
multimodal 

comparison. 

Focused on 
staging, not 
screening. 

Tran E & 
Ray K [17] 

Dense-breast 
women with 

negative 
mammograms 

Meta-analysis of 
MRI, US, MBI 

MRI works best; 
US and MBI have 

limited value. 

Dense-breast 
subgroup; 

pooled analysis. 

Study 
heterogeneity; no 

mortality data. 

Shermis 
RB et al. 

[21] 

Dense-breast 
women with 

negative 
mammography 

Molecular Breast 
Imaging (MBI) 

MBI detected 
~7.7 extra 

cancers/1,000; 
recall 8.4%. 

Real-world 
clinical data. 

Retrospective: 
radiation 
exposure. 



 

38 Volume 03, Issue 2, 2025 

where MRI availability or cost is a barrier [4], [5], [16]. 
Particularly in moderate-density categories, DBT and  
ultrasound offered progressive cancer detection [6], [7], 
[15]. Diagnostic accuracy was improved and false 
positives were decreased with the use of AI and 
multimodal techniques that integrated mammography 
with US or digital Breast Tomosynthesis [19], [20]. 
Overall, the results were consistent with previous studies 
and new worldwide screening guidelines that emphasize 
multimodal and risk-stratified screening for women with 
dense breasts [1], [18]. 
B. Interpretation of Findings 
The risk of developing breast cancer is increased by 
dense breast tissue, which also makes it more difficult to 
spot anomalies on a mammogram. It highlights the 
limitations of using mammography alone [2], [3], [11]. 
There is increasing evidence that a more individualized 
strategy, taking into account variables such as personal 
risk factors, age, and breast density, may improve 
screening outcomes [12], [18]. For women with very 
dense breast or at high risk, MRI is the method of choice 
consistently demonstrates the highest cancer detection 
rate and the lowest interval cancer rate among all imaging 
techniques. Different modalities, such as mammography, 
ultrasound, and AI-assisted approaches, are often 
assessed according to how well they meet their 
standards. Nevertheless, there are a few drawbacks to 
MRI: long periods of examination, claustrophobia, and 
discomfort from intravenous contrast can all lower patient 
compliance and result in insufficient or misleading tests. 
Therefore, timely access to performing an MRI is difficult 
due to these limitations [5], [6], [17]. Contrast-enhanced 
spectral mammography (CESM) requires less time for 
examination and offers sensitivity similar to MRI. Studies 
have shown that CESM performs effectively, with similar 
specificity to conventional mammography. As a more 
practical alternative to MRI, CESM has drawn interest. 
Therefore, it is also preferred in environments where 
access to emerging screening techniques is restricted. 
The availability of appropriate tools and contrast agents 

affects its value. Additionally, CESM can detect a variety 
of breast malignancies and has shown a higher true-
positive rate in some clinical settings. Therefore, it also 
lessens the need for follow-up ultrasound tests [4], [16].  

Previous studies suggest that MRI has some 
limitations, although it remains the most accurate imaging 
method. Its use is influenced by elevated cost, extended 
scan time, and limited availability [5]. Supplemental 
ultrasound, especially Automated Breast Ultrasound 
(ABUS), increases the detection of cancer in dense 
breasts. However, it is still operator-dependent and has a 
higher false-positive rate, which has been reported in 
some studies to be between 4% and 10%. This can result 
in higher recall rates and needless biopsies. It is 
nevertheless an appropriate and accessible choice in 
environments with minimal resources despite these 
disadvantages [13], [15]. When paired with AI 
interpretation, DBT improved detection by showing 
greater lesion visibility and fewer overlapping tissue 
effects than 2D mammography [6], [7], [19]. As shown in 
Table 5, a comparative overview of cost and accessibility 
among breast cancer screening modalities for women 
with dense breasts is summarized. While MRI offers the 
highest sensitivity, but limited accessibility and a higher 
cost [5]. Mammography and ultrasound remain the most 
practical and affordable screening tools worldwide [1], 
[13], [18]. Emerging AI-assisted systems are showing 
potential to enhance efficiency and access in clinical 
practice [6], [19]. 

The cancer detection rate (CDR) of digital breast 
tomosynthesis (DBT) was higher than that of 2-D digital 
mammography in women with BI-RADS C/D (dense) 
breasts, with reported values of 5.3 and 3.7 per 1,000 
screenings, respectively. In dense breast tissue, a 
previous study suggests that DBT has a significant 
additional advantage in enhancing lesion diagnosis [22]. 
There is potential for improving the interpretation of 
supplementary breast imaging with the use of artificial 
intelligence (AI). Automated 3D breast ultrasound 
(ABUS) and mammography using AI increased 

Table 5: Comparative summary of cost and accessibility of breast cancer screening modalities in women with dense breasts. 

Modality Cost / Accessibility Key 
References 

2D Mammography Lowest cost and most widely available modality; it forms the 
foundation of national screening programs worldwide. 

[1], [18] 

Digital Breast 
Tomosynthesis (DBT) 

Moderately higher cost than 2D but increasingly available; 
compatible with existing mammography systems and feasible for 

large-scale screening. 

[7] 

Ultrasound (HHUS / ABUS) Low to moderate cost; handheld ultrasound is widely available but 
operator-dependent, while automated systems improve 

standardization but require dedicated equipment. 

[13] 

Contrast-Enhanced 
Spectral Mammography 

(CESM) 

Moderate cost; more affordable and accessible than MRI, 
requiring IV contrast but using standard mammography 

infrastructure. 

[4] 

MRI Highest cost and limited accessibility; requires advanced 
equipment, longer examination time, and specialized 

interpretation—best suited for high-risk women. 

[5] 

AI-Assisted Imaging Implementation cost remains variable, but integration improves 
efficiency and workflow. Accessibility is expanding with digital 

infrastructure and validation studies. 

[6], [19] 
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diagnostic efficiency and accuracy in women with dense 
breasts, confirming its capacity to decrease observer 
error and reading time [19]. While comparing traditional 
2D mammography with DBT and CESM, the latter two 
provide comparatively greater radiation doses. 
Nevertheless, the increase stays within globally 
recognized safety and diagnostic reference ranges. 
CESM uses two sets of X-ray images at low and high 
energy levels, so its dual-energy imaging method is 
responsible for the higher exposure. However, DBT uses 
slightly higher doses, which come from obtaining multiple 
projections to construct 3D images [4], [7], [16]. Individual 
risk should be taken into consideration when developing 
screening strategies for women with dense breasts. 
Ultrasonography, digital breast tomosynthesis, and 
contrast-enhanced spectral mammography are more 
effective screening techniques for improving early 
detection in women with heterogeneously dense breast 
tissue (BI-RADS C) [7], [13]. On the other hand, MRI and 
CESM are recommended for high-risk women with highly 
dense breasts (BI-RADS D). MRI is more appropriate 
because of its higher sensitivity, but if it is not available, 
CESM serves as an alternative [1], [16]. AI-assisted 
image interpretation has been demonstrated in studies to 
enhance lesion characterization. It also normalizes 
reporting and reduces reader variability, especially in 
dense breast screening [19], [20]. The Cancer Detection 
Rate (CDR), defined as the number of malignancies 
found in every 1,000 women examined, is standardized 
as the primary measure of screening effectiveness to 
ensure comparability between modalities for assessing 
how well imaging modalities operate in practice. 

Especially in women with dense breasts, this parameter 
is seen to be clinically more significant than sensitivity 
alone. The most recent EUSOBI and USPSTF 
recommendations support individualized screening for 
women with extremely dense breasts [1], [17], [18]. 
Because overlapping tissue may conceal lesions in 
women with dense breasts, the False Negative Rate 
(FNR) shows malignancies that were not detected during 
screening. Mammogram sensitivity can drop by as much 
as 48% in very dense breasts; according to EUSOBI 
recommendations, almost half of malignancies remain 
undetected. As noted, MRI, CESM, and ultrasound 
enhance detection in dense tissue, whereas 
mammography is less successful in this part of the body. 
In this high-risk category, lowering the FNR and ensuring 
early cancer identification are therefore the main 
objectives of supplemental screening [1], [13].  

Worldwide, there are different screening guidelines for 
women with dense breasts. Routine supplemental 
screening, such as MRI or ultrasound, is not supported 
by enough evidence, according to the U.S. Preventive 
Services Task Force. According to the European Society 
of Breast Imaging (EUSOBI), breast MRI should be made 
available to women with extremely dense breasts. 
Further, studies have demonstrated that the diagnostic 
performance of supplemental modalities varies. 
Underscoring the need for a single international standard 
to support uniform risk assessment and equitable 
screening procedures around the world [1], [7], [13], [18]. 
As shown in Figure 3, a conceptual algorithm diagram 
describes a strategy of screening for breast cancer based 
on density and risk. BI-RADS density risks are used to 

Figure 3: Conceptual algorithm for breast cancer screening [1], [3], [6], [17]. 
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stratify patients, which helps determine which additional 
modalities, such as MRI, CESM, DBT, ultrasound, or AI-
assisted interpretations, should be used. According to 
previous studies, this strategy prioritizes personalized 
screening to maximize early detection and resource use 
[1], [3], [5], [6], [13], [16]-[19], [22]. 
C. Limitations of the Review 
There are some limitations in the review. Only English-
language studies from large databases were considered, 
which may have excluded gray literature and introduced 
potential publication bias. Methodological heterogeneity 
among studies, including variations in imaging 
techniques, sample numbers, and reference standards, 
creates challenges for meta-analysis and limits direct 
comparison. The homogeneity of synthesis is impacted 
by inconsistent inclusion and exclusion criteria in studies. 
The generalizability of several studies was limited by 
small sample sizes and single-center data. 
D. Limitations of the Available Evidence 
Major limitations also exist within the currently available 
body of evidence. Numerous studies had varying study 
quality, limited sample sizes, and were retrospective and 
single-centered [4], [6], [7], [13], [15]. The evaluation of 
interval cancers and long-term results was limited by 
short follow-up periods [16], [17]. Additionally, cross-
study comparisons were restricted by uneven breast 
density classification and a lack of uniform BI-RADS 
reporting [3], [11]. Furthermore, there is still a lack of cost-
effectiveness data for supplementary modalities such as 
MRI, CESM, and MBI, and AI systems need thorough 
external evaluation before clinical integration [19], [20]. 
Furthermore, because the majority of research was 
carried out in North America or Europe, generalizability is 
limited by the underrepresentation of other populations 
[1], [7], [18]. 
E. Implications and Future Directions 
For Research: Two critical research gaps include 
supporting the cost-effectiveness and diagnostic 
precision of abbreviated MRI (AB-MRI) for women with 
dense breasts, and the other is addressing AI 
implementation challenges, such as infrastructure, 
training, and expense, to facilitate equitable integration 
across healthcare systems. The current gold standard, 
MRI, should be compared with modern modalities, such 
as DBT, CESM, and AI-assisted screening, in large-
scale, multicenter trials in the future to guide 
implementation in various clinical settings [4]-[6], [19]. 
Researchers need to adopt standardized imaging 
strategies across breast cancer screening studies to 
strengthen the methodological rigor and achieve more 
precise outcomes. In addition to the BI-RADS 
classification, the use of these strategies makes it easier 
to compare studies in a meaningful way [3], [6], [7], [13]. 
In order to determine safer and more efficient pathways, 
future research should also compare the complication 
rates of different imaging modalities. Furthermore, it 
should assess the possible risks associated with different 
biopsy techniques, such as core needle versus vacuum-
assisted procedures [13], [16]. Future studies should also 
examine long-term outcomes, such as mortality, interval 
cancer rates, overall survival (OS), and breast cancer–

specific survival (BCSS) [17]. Simultaneously, screening 
procedures should be designed with patient-centered 
aspects, like comfort, anxiety, and time commitment, in 
consideration [1], [10]. Furthermore, AI-driven screening 
models also need to be evaluated on a variety of 
populations in order to eliminate algorithmic bias and 
guarantee dependability [12], [19], [20]. 
For Practice/Policy: The USPSTF and EUSOBI 
guidelines recommend that clinicians adopt multimodal 
and personalized screening methods for women with 
dense breasts. State-level laws in the United States (US) 
regulating breast density reporting emphasize the value 
of individualized screening by promoting equity and early 
detection. The absence of established payment systems 
is one of the main obstacles to obtaining advanced 
modalities such as MRI, CESM, and DBT. These 
technologies remain unaffordable without financial 
assistance.  Therefore, in order to guarantee equal 
access and encourage the regular utilization of clinically 
established screening procedures, government 
authorities must implement appropriate payment systems 
[1], [6], [7], [18]. Future research should work on the 
development of safer alternatives, such as gadolinium-
free MRI agents and low-iodine CESM agents, to reduce 
toxicity [4], [5]. Personalized imaging recommendations 
based on genetic risk profile are becoming more and 
more important in the advancement of breast cancer 
screening. Future studies should work on well-known 
predictive models, like Tyrer-Cuzick or Gail. Tools like the 
polygenic risk score provide a pathway to more 
customized screening techniques. In order to promote 
early detection, these methods guarantee that screening 
protocols with genetic risk factors enhance the efficiency 
of resource utilization [1], [4], [6], [12]. Future research 
should standardize the practical implementation of 
abbreviated magnetic resonance imaging (AB-MRI) for 
women who are at high risk of cancer. Recent studies 
suggest that AB-MRI can provide benefits to large-scale 
screening programs by significantly reducing scan times 
while preserving excellent sensitivity [5], [6]. Healthcare 
providers have the responsibility to clearly describe the 
challenges so that women who are at high risk can 
choose the best possible option for themselves without 
anxiety. Proper planning can adjust screening techniques 
to the available resources; for example, in low-resource 
settings, ultrasound and digital breast tomosynthesis 
(DBT) may be less expensive alternatives to conventional 
mammography [1], [6], [7]. While remaining practically 
feasible, the integration of contrast-enhanced spectral 
mammography (CESM) could improve detection 
capabilities for middle-resource systems [16]. Future 
frameworks for screening should also combine high-risk 
identification with preventive measures such as 
chemoprevention, which can be applied using validated 
risk models when clinically appropriate [12], [18]. As 
recommended by EUSOBI and USPSTF, high-resource 
settings should include MRI or AI-assisted multimodal 
techniques for women with very dense breasts or high 
risk [1], [18]. Routine screening should begin at age 40 to 
50 and continue until age 70, as advised by major 
guidelines, in accordance with evidence-based age 
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standards. To balance benefits, risks, and utilization of 
resources, screening decisions should be personalized 
within national health strategies for those over 70 [9], [18]. 

V. CONCLUSION 

The problem of thick breast tissue often interferes with 
early cancer diagnosis using traditional mammography. 
To overcome this, sophisticated techniques, such as 
MRI, CESM, and DBT, are applied in order to increase 
the detection rates significantly. In areas where MRI is not 
available, additional modalities such as ultrasonography, 
CESM, and AI-assisted readings enhance the diagnostic 
accuracy. The next stage of screening is the combination 
of these state-of-the-art, multimodal technologies, 
particularly the CESM and AB-MRI, with individualized 
and risk-specific screening based on both genetic and 
clinical. This movement towards individualized care is 
beneficial to more equitable and cost-effective care, and 
ultimately results in improved clinical outcomes, reduction 
of mortality due to breast cancer, and is consistent with 
the significance emphasized by the recent 2024 USPSTF 
guidelines. 
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ABSTRACT 

Organizations are increasingly enhancing their cyber defense capabilities in response to cybercrime's growing 

threat and risk. These strategies, frequently built around log management to meet detection and investigation 

requirements, benefit from ad-hoc additions of so-called "best of breed" specialized solutions for specific and 

potentially complex perimeters. This tends to address their flaws or even introduce new ones. A first example 

would be integrating SIEM with orchestration solutions such as SOAR to industrialize or even fully automate 

investigation or incident response processes or EDR to address technical detection use-cases. Particularly at the 

system level and to facilitate endpoint response. However, log management remains a critical component of many 

organizations' cyber defense strategies. This approach has flaws, including the quantity/quality of logs, scalability, 

and the detection strategy's quality, all of which affect the percentage of false positives.Nonetheless, digital 

deception, referred to as "deception tools," can bolster or even wholly replace the log management approach. This 

technology, which entails the placement of traps or decoys within an Information System, would enable 

organizations to detect specific cyberattacks, eliminate doubts, and even initiate processes. Although industrialized 

incident response first appeared on the Internet several decades ago, the concept of the digital decoy benefits from 

a thriving market. The subject of this study is the benefits and limitations of various market solutions for enhancing 

the detection and response capabilities of today's businesses. 

 

INDEX TERMS: Deception Tools, Cybersecurity, Big Data, SOC, Detection, Response, Threat 

Intelligence, Security, Artificial Intelligence, Robotics 

 

I. INTRODUCTION 

The use of SIEM in conjunction with orchestration 

solutions such as SOAR to industrialize or even fully 

automate investigation or incident response processes, 

and the use of EDR to address technical detection use-

cases are just a few examples of what can be 

accomplished. Particularly at the system level, and to 

make endpoint response more convenient. On the other 

hand, Log management continues to be a critical 

component of many organizations' cyber defense 

strategies today [1]. These flaws include log quantity and 

quality issues, scalability, and the quality of detection 

strategies, all of which impact the percentage of false 

positives identified using this technique. Traditional log 

management strategies can be supplemented or 

completely replaced with digital deception, also known 

as "deception tools." With the help of this technology, 

businesses could identify and eliminate specific 

cyberattacks and eliminate doubts, and even initiate 

processes. This technology involves the placement of 

traps or dummy data within an Information System to 

accomplish this. A digital decoy is not a new concept. 

Still, it has experienced tremendous growth since its 

introduction on the Internet several decades ago as part 

of an industrialized incident response process. This 

research looks at the benefits and drawbacks of various 

market solutions for improving today's businesses' 

detection and response capabilities [2]. 

"However," when do you anticipate that an incident 

will occur? "Who would be targeted?" is no longer the 

question when confronted with a cyber threat that is 

constantly evolving. Therefore, it is critical to develop 

detection and response capabilities tailored to the 

increasingly sophisticated and targeted cyber threats 

encountered [3]. 

To protect themselves against cyberattacks, 

organizations have built their cyber defense capabilities 

around the themes of incident detection and response, 
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employing solutions and tools such as SIEM, best-of-

breed (IDS, AV, WAF, and so on), SOAR (Security 

Orchestration, Automation, and Response), and EDR 

(Endpoint Detection and Response), or even 

functionality provided by other solutions or IT 

environments on the perimeter. Organizations have 

formed internal or external SOC teams comprised of 

MSSPs and CSIRTs to supplement the capabilities of 

their IT and security teams in the event of a cyber 

incident [4,5]. The remainder of this paper is organized 

as follows. Section II reviews related work and existing 

cyber defense approaches relevant to SOC operations. 

Section III discusses digital deception concepts and their 

role in detection, response, and threat intelligence. 

Section IV presents the proposed deception-driven 

cyber defense management approach aligned with 

MITRE ATT&CK and SOAR. Section V reports 

experimental results and performance analysis using 

quantitative metrics. Finally, Section VI concludes the 

paper and highlights future research directions. 

 

II. RELATED WORK 

A. Development of Cyber Defense 

"However," When is an incident likely to occur? In the 

context of an ever-evolving cyber threat, the question is 

no longer "Who would be targeted?" Therefore, it is 

critical to develop detection and response capabilities 

tailored to the increasingly sophisticated and targeted 

cyber threats [6]. 

To accomplish this, organizations have built their 

cyber defense capabilities around the themes of incident 

detection and response via solutions and tools such as 

SIEM, best of breed (IDS, AV, WAF, etc.), SOAR 

(Security Orchestration, Automation, and Response), 

and EDR (Endpoint Detection and Response), or even 

through the functionality provided by other solutions or 

IT environments on the perimeter. In terms of teams, 

organizations have established internal or external SOC 

teams comprised of MSSPs and CSIRTs to bolster their 

IT and security teams' ability to manage cyber incidents 

[7, 8]. 

B. Log Management, A Cornerstone Not Without 

Flaws 

Log management often remains the central detection 

approach and the most widespread and used among 

organizations to respond to cyber defense challenges, 

not without reason [9]. 

1. The Advantage of the Detection Approach Via Log 

Management 

This approach has several major advantages [10]: 

• Help meet legal obligations. 

• Allows the investigation and retention of data or 

even evidence. 

• The approach to the treatment of risks and feared 

scenarios translated into a detection strategy or 

detection scenario. 

• Take advantage of a mature market (recognized 

players, controlled solutions, etc.) 

• There remains a known, mastered, and proven 

approach. 

2. The Limits of the Approach 

However, this approach has certain weaknesses, 

which, to name only the most important, are the following 

[11, 12]: 

• Many false positives depending on the detection 

strategy (Particularly with the more frequent use of 

machine learning today, adding complexity and 

volume of alerts).  

• Scalability - in particular, due to the complexity of 

the Information System and the increase in the attack 

surface. 

• Quality/relevance of logs recoverable on the 

Information System - which impacts the quality of the 

detection strategy.  

• Analysis or resolution of doubt is often necessary 

and, therefore, speed of response depending on the 

SOC / CSIRT maturity (working hour, right of 

response on the scope, ease of removal of doubt, 

etc.).  

C. The Digital Decoy as a Complement to Standard 

Log Centralization Approaches 

1. Introduction to Digital Decoy 

Digital decoy is an old approach brought up to date 

and is taking advantage of a booming cyber offer. It 

offers the deployment of active traps on an information 

system that aims to [13, 14]: 

• Make the attacker waste time or even dissuade him. 

• Detect abnormal behavior and, therefore, potential 

cyber-attacks. 

• Provide security teams with the means to deepen 

their knowledge of techniques and tactics used in the 

context of offensive security. 

The digital decoy can take different forms, utilities, 

and uses, which we will detail later. This can result in: 

• A decoy machine masquerading as a computer or 

a server. Its goal is to encourage an attacker to 

interact with it to create an alert. 

• A decoy placed on a legitimate system that can be: 

• A dummy identifier in the AD. 

• A transparent file where information appearing to 

be confidential is stored (password, instructions, 

etc.). 

A bait, a decoy object placed on a legitimate host. Its 

objective is to trigger an alert if one interacts with it by 
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opening it or modifying it. These specific lures are also 

called breadcrumbs [15].  

The digital decoy can be deployed in different forms: 

• Upstream of the protected Information System. 

• Merged (deployed in parallel) to the Information 

System. 

• Isolated from the Information System. 

• Integrated directly into the Information System. 

Current proprietary decoy technologies are planned to 

be deployed upstream or merged with the Information 

System. These offer features to facilitate deployment 

and integration into the IS, including [16]: 

1. Ability to analyze the information system, either by 

scanning it or using data from a CMDB. Following the 

analysis, the ability to establish deployment 

recommendations on the following points: type of 

host, location, MAC address, OS, or even hostname. 

The operator receiving the recommendations will 

have the possibility of accepting them or adapting 

them according to their needs [17]. 

2. Creation of decoys on the fly and integration into 

the IS in the form of virtual machines, potentially 

completed by installing an agent dedicated to 

decoying or linked to a suite of endpoint security 

solutions on the perimeter for the deployment of 

breadcrumbs. 

3. Ability to interface with other IS solutions of any 

type: Firewall, EDR, SIEM, SOAR, etc [18]. 

This integration can be a significant asset for the 

organization by allowing industrialization/automation of 

detection and response. The main uses and functions of 

the maturity of the organization's IS, the characteristics 

of which we will then detail, are [19]: 

• The attacker's deception or misinformation. 

• Advanced detection via the deployment of traps 

on the Information System [20]. 

• The response advanced through the facilitation of 

the removal of doubt or even the automation of the 

response after detection put forward by the traps 

deployed. 

• Gaining information on the techniques and tactics 

of the attackers ("Threat Intelligence") for the Blue 

team [21]. 

 

III. METHODOLOGY 

THE DIFFERENT USES OF DIGITAL DECOY 

A. Deception or Misinformation by the Attacker 

1.  Introduction 

Digital decoy brings the ability to deceive or misinform 

the attacker. This capability is made possible through the 

positioning of the decoy. Several possibilities exist. 

1. The simplest is to position the decoy between the 

attacker and the target; he can modify or supplement 

the information passing. Typically, network 

equipment such as IPS, WAF, or NGFW can be used 

in this sense to protect multiple systems in a network 

[10]. 

2. The second possibility would be to use an agent 

on the target workstations who, in addition to 

responding to remote requests, could thus redirect or 

respond to local requests or even deposit false 

information such as accounts or files, on the system. 

This technique is particularly effective in countering 

the recognition phase by causing the attacker to 

waste time by increasing the complexity of the 

information to be analyzed to achieve his ends. Also, 

it can be used to attract the attacker to a detection 

decoy deployed or even to a sandboxing 

environment to facilitate the analysis of the attack 

and the identification of IOC. Be careful, however, 

that the decoy implemented does not impact 

legitimate mapping services, for example. 

Table 1. Methodological Uses of Digital Decoy in SOC Operations 

Use of Digi-
tal Decoy 

Primary Objec-
tive 

SOC Benefit 

Deception / 
Misinfor-
mation 

Mislead the at-
tacker and in-
crease cognitive 
load 

Prevention and 
early deterrence 

Advanced 
Detection 

Detect malicious 
behavior with high 
confidence 

Reduced false 
positives and im-
proved visibility 

Advanced 
Response 

Automate and ac-
celerate incident 
response 

Faster contain-
ment and deci-
sion-making 

Threat Intel-
ligence 

Collect attacker 
tactics, tech-
niques, and IOCs 

Improved threat 
hunting and intel-
ligence 

Table 1 summarizes the methodological roles of digital 

decoy technologies across SOC operations, highlighting 

their objectives and operational benefits. 

Figure 1 illustrates the relative methodological impact of 

digital decoy usage across deception, detection, 

response, and threat intelligence, with advanced 

detection and automated response showing the highest 

operational significance within SOC workflows. 

 
Figure 1: Methodological Coverage of Digital Decoy in SOC Operations 
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2. Benefits for Log Management 

Where log management works to detect an attacker, 

disinformation is an approach that falls within the scope 

of prevention and changes the standard cyber approach. 

The latter completes the detection of log 

management vis-à-vis low to medium-level cyber actors 

by discouraging them or pushing them to error via disin-

training or vis-à-vis cyber actors. A higher and 

determined level makes them waste time or push them 

to the fault to detect them. 

B. Advanced Detection 

1. Introduction 

Detection through decoys deployed on the Information 

System is made possible because no access is 

supposed to take place on these elements of the IS. This 

detection method can highlight both external threats and 

internal threats. This initialization method requires listing 

the IS services and uses a global and legitimate manner 

that could access decoys such as IS scan tools, global 

scripts, inventory tools, etc. A good configuration of a 

decoy solution must allow the latter not to raise any alert 

other than a legitimate and proven alert. Depending on 

the desired detection strategy, decoys can be deployed 

at different levels on the Information System. They can 

be the subject of the deployment of physical or virtual 

equipment. These can be deployed at the heart of the 

network to deploy equipment close to the sites or even 

agents on the workstations/servers. This deployment 

allows the setting up of traps at several levels: 

• Networks, with the creation of entire subnets 

dedicated to disinforming an attacker and raising 

alerts in the event of access to these environments. 

• Systems - creating fictitious systems as close as 

possible to the real IS. 

• Breadcrumbs/baits - added interest or bait data for 

attackers on fictitious or real environments. 

Example of detection of a ransomware attack using 

digital decoy: 

• Step 1: Accessing a Decoy File Server Service Using 

Miter Techniques 

ATT & CK: "Discovery of remote systems" (T1018) 1, 

"Exploitation of a remote vulnerability" (T1210) 2, which 

can be spotted through access to fictitious networks, 

systems, or services. 

• Step 2: Change of integrity of a decoy file through its 

encryption via a Miter ATT & CK technique "Encrypted 

data for impact" (T1486) 3, which can be detected via 

the modification of a bait. 

2. Benefits for Log Management 

Detecting certain Miter ATT&CK tactics via digital 

decoys can be just as, if not more effective, than 

detection via log management. This includes the 

following tactics [16]: 

• The gratitude. 

• Access to login credentials. 

• Lateral movements. 

• Collection and impact on the data. 

A digital decoy can be used to detect recognition 

actions such as scans. A decoy implemented in a subnet 

can detect an attacker's recognition scan. This enables 

more precise detections than a SIEM can via firewall 

logs, as even the tiniest error from the attacker will be 

detected. Indeed, the thresholds for these SIEM 

detection scenarios must be sufficiently high to prevent 

noise (false positives) from allowing a discrete attacker 

to remain undetected. For digital decoys and SIEMs, on 

the other hand, this type of scenario necessitates a 

thorough mapping of their network to locate the device 

associated with the IP that generated the alert and thus 

facilitated the 'investigation. During the recognition 

process, the attacker will attempt to obtain connection 

identifiers that will enable him to gain access to critical 

systems. By creating bogus Active Directory accounts 

and categorizing any interaction with them as malicious, 

digital deception can make it easier to detect such 

activity. This is especially useful for detecting brute-force 

attacks, most notably password spraying. Adjusting this 

type of detection scenario for SIEMs is challenging due 

to the trade-off between noise due to false positives and 

alert sensitivity. Additionally, the digital decoy can be 

used to detect more sophisticated "pass-the-hash" or 

"pass-the-ticket" techniques by deploying breadcrumbs, 

which are difficult to detect using a SIEM. 

Additionally, decoys associated with these dummy AD 

accounts can be placed on a legitimate host in the form 

of breadcrumbs in a location that known techniques may 

target—for instance, deploying an identifier in a web 

browser or an unsecured identifier in a user file. Thus, if 

an attacker discovers the dummy connection identifier 

on a compromised machine and attempts to connect to 

a legitimate service, he will be detected. 

Lateral motion detection can be effective using a 

digital decoy. Indeed, all the uses of remote control 

techniques (RDP, SSH, etc.) on a decoy machine or a 

dummy account will be detected. In addition, the 

connection identifiers obtained previously by the 

attacker may be assumed to be authentic by the latter. 

Logging in remotely to any instance using these dummy 

credentials will then create an alert. The lateralization 

phase of the attack will become more complex. It 

effectively complements the detection approach by log 

management, which can only with difficulty differentiate 

the legitimate administrator actions from the actions of 

an attacker carried out thanks to a compromised 

account. 
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Decoying can also be a significant asset in detecting 

collections and the impact on data via baits, as we have 

previously presented. Attractive to an attacker, these 

baits should be placed in strategic places and, if 

possible, little frequented on legitimate hosts. Here are 

some use cases: 

• Positioning a decoy file named "Results 2020.ppt" 

on a file exchange server only accessible to COMEX 

members. In this case, the population with access to 

the lure is limited. It is also possible to sensitize the 

population or even keep them informed to ensure the 

quality of the alerts raised. 

• Position a "database import" script on a front-end 

server, such as a web server. This case is different 

from the previous one but can be improved similarly. 

Because of these different examples, the deception tools 

bring to the cyber defense approach an added value for 

the detection via the following points: 

• Reducing the volume of data necessary for 

monitoring is possible because few traps are needed 

to cover a large perimeter (for example, for the 

detection of reconnaissance actions). This reduction 

in the volume of data reduces costs and improves the 

performance of SIEM-type tools. 

• An improvement in the relevance of alerts through 

a reduction in noise due to false positives. This 

reduces the load on the teams responsible for 

analysis and response and increases confidence in 

the detection tools. However, care must be taken not 

to create a dead zone in detecting the IS, whether in 

terms of perimeter or attack scenario not covered. 

• It is a much faster deployment because it is less 

complex to set up than a detection scenario system 

in a SIEM. The design and tuning phases are notably 

greatly reduced. 

Log management is nevertheless necessary to complete 

the digital decoy, in particular on the following points: 

• Has more context on the alerts been raised? 

• Detect undetectable behavior using decoy tools. 

• Collect the data necessary for forensic operations. 

C. Advanced Response 

1. Introduction 

Once detection capabilities are deployed, organizations 

can rely on these detection elements for two things: 

• Reinforcement and facilitation of the investigation 

or the removal of doubts following an alert. 

• The triggering of automatic responses: the 

quarantine of the attacker, the ban of his IP, or the 

shutdown of a portion of the network. This response 

automation should be limited to simple and mastered 

scenarios at first. 

Regarding the facilitation of the investigation, the 

approach is to use the information and alerts raised by 

the decoy solution with other available information 

(technical or human) to facilitate the understanding of 

the situation and the removal of doubts during the 

investigation. The automatic response is only possible if 

an effort has been made to interface directly, or indirectly 

(via an interface orchestration solution), the decoy 

technology with "prevention" technologies on the 

Information System. This interfacing would then be done 

with, for example, firewalls or an EDR to allow the 

confinement of a station or a network following the lifting 

of an alert. Example response when detecting a 

ransomware attack using digital decoy: 

Following the detection of the following techniques: 

"Discovery of remote systems," Exploitation of a remote 

vulnerability" and access to a decoy file, launching of a 

system containment process causing alerts via an 

interface between the decoy solution and the EDR. 

2. Benefits for Log Management 

As deception solutions have been developed to limit the 

number of false positives, the slightest alert from a decoy 

significantly increases the likelihood of any other alert 

linked to it (source, destination, position, or account 

used, etc.). 

In particular, this allows better decisions to be taken, 

potentially faster, to define the posture to adopt in 

responding to the incident. For very specific cases, a first 

containment action could be launched automatically 

thanks to this plausibility presented by the decoy solution 

alerts. 

These aspects can be reinforced in an interface 

between the decoy technology and a SIEM or even a 

SOAR for the most mature organizations on the subject. 

D. Threat Intelligence 

1. Introduction 

The deployment of decoys is also possible to allow 

information collection to understand better the progress 

of an attack and the evolution of offensive tactics and 

techniques to strengthen cyber defense capabilities. 

This solution falls within the scope of research and 

innovation. It should be reserved for mature 

organizations that would like to strengthen their services 

or products (solution vendors, security service 

organizations, MSSPs, etc.). 

For this purpose, an isolated deployment of the 

information system is recommended for: 

• Have an environment to interact freely with the 

attacker and push him to adapt and discover himself. 

• Not to be constrained by a desire to reduce the 

risk incurred on production or the business and thus 

have time to analyze. 

Example of recovery of IOCs via the deployment of a 

decoy information system: 



 

47 Volume 03, Issue 2, 2025 

- Step 1: Deployment of the isolated sandbox 

(decoy information system). 

- Step 2: Maintain the platform in operational 

condition and wait for an attack/analysis. Or use of a 

payload retrieved beforehand in another context. 

- Step 3: Detection of abnormal activities on the 

platform (unwanted internal communication, writing 

to disk, use of increased resources, etc.). This point 

is facilitated when the initialization of the compromise 

is voluntary or when the environment is perfectly 

mastered because it is designed for this purpose. 

- Step 4: Analysis and monitoring of the attack to 

identify at least the following points: 

o Timeline of the attack. 

o Techniques and tactics used. 

o Payloads, tools, third-party files deposited. 

o Domains, URLs, delivery, download, and 

communication IPs used in the attack. 

- Step 5: Sharing IOCs to the Cyber community or 

via its Threat Intelligence service. Capacity building 

for detection solutions via knowledge base (Antivirus, 

IPS, etc.). 

- Step 6: Use all or part of the IOCs recovered to 

initiate a threat hunting campaign on its decoy 

platform perimeter. 

2. Benefits for Log Management 

Knowing your opponent is essential for any defense. 

This approach helps by providing an environment 

conducive to understanding offensive security tactics 

and techniques. 

The main contributions are: 

• Understanding the evolution of tactics and 

techniques allows it to adapt its cyber defense or train 

its blue team to the innovations.  

• Identifying signs of compromise to strengthen the 

detection of solutions using knowledge bases or as 

input or a hypothesis to initiate a threat hunting 

campaign.  

Although possible, identifying "0 days" remains unlikely 

because entities with this kind of offensive capabilities 

limit their use to very specific and controlled targets. 

E. Limits of Digital Decoy 

In addition to the advantages that digital decoy brings to 

cyber defense listed above, this approach nevertheless 

has real limits that you need to understand to use it: 

- MCO / MCS / maintenance in 

operational condition, security, and stealth of the 

developed solution. 

- Increase the attack surface by adding 

new technology or even a new service provider on 

the perimeter. 

- Dependent on perimeter solutions to 

act as part of the security incident response. 

- For a solution developed in-house - 

Very dependent on the cyber and IT expertise of the 

organization. 

- For a proprietary solution - The 

solution's cost and the support or even of the third 

party service operating the solution. 

 

III. RESULTS AND PERFORMANCE ANALYSIS 

The integration of behavioral digital deception within 
SOC operations demonstrated measurable 
improvements in detection accuracy, response 
efficiency, and alert quality when compared to 
traditional log-centric security monitoring. 
A. Detection Effectiveness 
Let 

• 𝐴be the total number of attack attempts, 

• 𝐷𝑑be attacks detected via digital decoys, 

• 𝐷𝑙be attacks detected via log-based mechanisms 
(SIEM). 

The detection rate is defined as: 

Detection Rate (DR) =
𝐷

𝐴
  (1) 

 
Experimental SOC simulations show: 

𝐷𝑅𝑑𝑒𝑐𝑜𝑦 > 𝐷𝑅𝑙𝑜𝑔 

This improvement is primarily due to the property that 
any interaction with a decoy is inherently suspicious, 
significantly reducing ambiguity and false positives. 
B. False Positive Reduction 
Let 

• 𝐹𝑃be the number of false positives, 

• 𝑇𝑃be true positives. 
The false positive ratio (FPR) is given by: 

  

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑃
    (2) 

 
Behavioral deception reduced false positives such that: 

𝐹𝑃𝑅𝑑𝑒𝑐𝑜𝑦 ≪ 𝐹𝑃𝑅𝑙𝑜𝑔  

 
This reduction directly lowers SOC analyst workload 
and mitigates alert fatigue. 
C. Response Time Improvement 
Let 

• 𝑇𝑑𝑒𝑡𝑒𝑐𝑡be detection time, 

• 𝑇𝑟𝑒𝑠𝑝𝑜𝑛𝑑be response execution time. 

Mean Time to Respond (MTTR) is: 
 

𝑀𝑇𝑇𝑅 = 𝑇𝑑𝑒𝑡𝑒𝑐𝑡 + 𝑇𝑟𝑒𝑠𝑝𝑜𝑛𝑑   (3) 

 
By coupling decoy-triggered alerts with SOAR-based 
automation, the observed result is: 

𝑀𝑇𝑇𝑅𝑑𝑒𝑐𝑜𝑦+𝑆𝑂𝐴𝑅 < 𝑀𝑇𝑇𝑅𝑆𝐼𝐸𝑀 

 
This confirms that deception-driven alerts enable faster 
and more confident containment decisions. 
D. Behavioral Mapping to MITRE ATT&CK 
Decoy interactions were successfully mapped to 
multiple adversary tactics, including reconnaissance, 
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credential access, lateral movement, and impact 
phases. Let: 

𝑀 = {𝑡1, 𝑡2, . . . , 𝑡𝑛} 
 
be the set of ATT&CK tactics observed through decoy 
engagement. The coverage ratio is: 

𝐶 =
∣ 𝑀𝑑𝑒𝑐𝑜𝑦 ∣

∣ 𝑀𝑡𝑜𝑡𝑎𝑙 ∣
 

 
These performance improvements are visually 
summarized in Fig. 2, which illustrates the comparative 
SOC performance using a normalized heatmap. The 
figure demonstrates consistent gains in detection 
accuracy, false-positive reduction, and response 
efficiency for the deception-driven SOAR-enabled 
architecture over traditional log-based monitoring. 

 
Figure 2: illustrates the comparative SOC performance using a normalized 

heatmap, demonstrating consistent improvements in detection accuracy, false-
positive reduction, and response time for the deception-driven SOAR-enabled 

architecture. 

 
Overall, deception-driven cyber defense enhances 

SOC management effectiveness by improving detection 
accuracy, reducing false positives, accelerating 
response time, and enabling precise behavioral 
attribution thereby validating digital decoys as a high-
impact adjunct to modern cyber defense architectures 

 

IV. DISCUSSION 

Cyberwarfare is now a reality. Because there are no 

rules in cyberwarfare, what we do today and how we 

decide what we will do in the future determines whether 

our businesses thrive or perish and whether our digital 

selves survive the digital battlefield. The nature of the 

modern battlefield is also changing rapidly due to 

information technologies and cyberspace [28]. 

Cyberweapons that are not lethal are possible. 

Cyberweapons are believed to have an advantage over 

strategic kinetic attacks in that they can inflict significant 

damage on a state's functioning without destroying its 

physical infrastructures or killing its citizens (firepower). 

Simultaneously, cyberattacks can cause widespread 

devastation and human death by destroying systems in 

physical domains connected to cyberspace. Cyberspace 

enables the following targets: 

a. In the event of a kinetic attack, installations, and 

systems (communications, command and control, 

and so on) in hard-to-reach areas (because of 

distance, strong kinetic defenses, concentrations of 

population, and so on). 

b. Banking and finance are now considered critical 

national infrastructures vulnerable to cyberattacks, 

both for the nation's reliance on financial systems and 

cyberspace through these systems. Damage to the 

financial system can obstruct the deposit of salaries 

in banks, restrict foreign trade, and even bring the 

economy to a halt. 

c. Logistics and transportation systems of the 

modern era are computer-assisted. 

d. National databases, including those maintained 

by government ministries, courts, universities, and 

other organizations. 

"Decoy Systems" is gaining traction in network security 

and computer incident response. Decoy Systems, 

alternatively referred to as deception systems, 

honeypots, or tar pits, are phony components used to 

entice unauthorized users by displaying various system 

vulnerabilities while preventing unauthorized access to 

network information systems [29]. Decoy systems add 

another layer of security to the network infrastructure, 

and thus their incorporation into an existing security 

structure adds significant value. Because false-positive 

and false-negative alerts are reduced, data from a 

properly implemented decoy system is typically more 

valuable than data from an intrusion detection system 

[30]. Decoy systems are referred to as "set and forget" 

IDS sensors because they are comprised of a single 

system or network of devices whose sole purpose is to 

capture unauthorized activity. This means that any 

packet entering or leaving a decoy system is by 

definition suspicious, simplifying data collection and 

analysis while also providing valuable insight into an 

attacker's motivations. Using decoy systems capitalizes 

on these prevalent issues and exploits them to its 

enticing advantage. They are intended to snare hackers, 

not to keep them out. 

 

V. CONCLUSION 

The defensive strategy of decoy systems is to prevent, 

learn about, conceal, obstruct, confuse, and misinform 

unauthorized users while collecting critical data 

necessary for identifying and prosecuting the criminal 

attacker. There are also two legal issues to consider 

when deploying decoy systems: privacy and liability. 

Decoy systems can collect a large amount of information 

about the attacker, potentially violating their privacy, 
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among all the privacy laws. Transactional and content 

data collection are the two types of data collected by 

decoy systems. The term "transactional" refers to 

information about data rather than the data itself. For IP, 

this includes IP addresses, IP header information, 

communication time and date, etc. The actual 

communication, such as IRC chats, emails, and 

keystrokes, is known as content data. Transactional data 

has fewer privacy concerns than content data. 

Liability concerns regarding the deployment of decoy 

systems imply that if a decoy system is used to attack or 

harm other systems or organizations, the organization 

may be held liable. If the system or resource is used to 

attack another system or resource, those systems or 

resources owners may bring a lawsuit. The argument is 

that if proper security precautions were taken, the 

attacker would not have been able to harm other 

systems. Thus the organization responsible for the 

decoy system would bear responsibility for any damage 

caused to another organization by the attack. They are 

legal in the United States as long as they are used 

responsibly. The digital decoy can be used to bolster 

cybersecurity. The following functionalities can be 

deployed following the organization's needs and 

strategy: 

• Detection through the use of decoys. 

• The attacker's deception. 

• Intelligence on threats 

• Following a detection alert, an 

industrialized/automated response is initiated. 

New products will be developed and marketed as 

decoy systems become more widespread. The evolution 

of intrusion detection systems should serve as a model 

for the future of decoy systems, with many sectors 

investing significant resources to make it a viable tool for 

defending our networks. Infrastructures that are critical 

(e.g., Military, Mission-Critical Applications). 

Underinvestment in cyber defense is currently a problem 

for VSEs and SMEs. Even if an effort is made to prevent 

security incidents, the reality is quite different in 

detecting and responding to them. Because these 

organizations are often linked to large accounts, their 

maturity poses a problem for digital decoys to provide a 

solution. To increase the use of digital decoys in 

Pakistan and make the functional, legal, and technical 

risks associated with this type of solution easier to 

manage. Integrating this type of solution into the 

regulations, ensuring protection, would be beneficial. 
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