RECOGNIZED IN "Y"

CATEGOREICH ISSN Print: 3005-8007
ISSN Online: 3005-8015
Volume 3

Issue 2

July - December 2025

e

Journal of Engineering
& Information Technology

Control Strategies for Smart Charging of Electric Vehicles
from a Grid Perspective: A Review

Muhammad Anique Aslam

Maximum Efficiency Point Tracking Control for Dynamic
Wireless Power Transfer

Muhammad Asif Feroz, Anam Safdar Awan, Fareeha Batool,
Narges Shahbaz, Anam Murtaza, Kamran Ali

End-to-End Motorcycle Violation Detection with Region-
Specific Automatic License Plate Recognition

Mohamed Rafi Atheek, Mohamed Buhary Fathima Anizul
Fathool, Atif Ishaq Khan

Optimizing Breast Cancer Screening Outcomes in Dense Breasts:
Diagnostic Performance, Cost-Effectiveness, and Implementation
of Supplemental Modalities

Malaika Arif, Imran Ahmad, Fatima Abbas, Sunbal Faraz Hayat

Behavioral and Deception-Driven Cyber Defense
Management in SOCs Using Digital Decoys, MI-TRE ATT&CK,
}md SOAR
Salm anl Virk, Atif Ali, Syed Muzammil Hussain, Saba




ISSN:

3005-8015 (Online)
3005-8007  (Print)
Vol. 3, Issue 2

(July - December 2025)

(UCP-JEIT)
UCP Journal of Engineering & Information Technology
HEC Recognized (Y- Category)

Volume 3
Issue 2

ENGINEERING AND TECHNOLOGY

Faculty of Information Technology & Computer Sciences
&
Faculty of Engineering

University of Central Punjab, Lahore, Pakistan



. O=—0

o e
o
L Bl CP JOURNAL OF

ENGINEERING AND TECHNOLOGY

Editorial Board

Patron

Dr. Hammad Naveed
Pro-Rector
University of Central Punjab

Editor-in-Chief

Dr. Muhammad Amjad Igbal
Dean FoIT & CS
University of Central Punjab, Pakistan

Managing Editor

Dr. Ali Ahmad
Assistant Professor,
University of Central Punjab, Pakistan

Associate Editors

Dr. Ali Ahmad

Assistant Professor,

University of Central Punjab, Pakistan
Area Editor (Electrical Engineering)

Dr. Ali Saeed

Associate Professor,

University of Central Punjab, Pakistan

Area Editor (Computer Science and Information Technology)

Dr. Muhammad Babur

Associate Professor,

University of Central Punjab, Pakistan
Area Editor (Civil Engineering)

Dr. Gulraiz Ahmed
Associate Professor,
University of Central Punjab, Pakistan
Area Editor (Mechanical Engineering)



. O=—0

o e
o
L Bl CP JOURNAL OF

ENGINEERING AND TECHNOLOGY

Advisory Board

International Members

Dr. Muhammad Saadi
(Nottingham Trent University, UK)

Dr. Muhammad Ramzan
(Saudi Electronic University, KSA)

Dr. Nasir Rajpoot
(University of Warwick, UK)

Dr. Ali Nasir
(King Fahad University of Petroleum and Minerals, KSA)

Dr. Adnan Qureshi
(Birmingham Newman University, UK)

Dr. Touseef Tahir
(University of Roehampton, London, United Kingdom, UK)

Dr. Safdar Ali
(Jeju National University, South Korea)

Dr. Ahmad Usman
(University of New South Wales, Australia)

Dr. Neel Kanwal
(Oslo University Hospital, Norway)


https://www.ntu.ac.uk/staff-profiles/science-technology/muhammad-saadi
https://seu.edu.sa/caic/en/doctor-cv/?p=bS5yYW16YW5Ac2V1LmVkdS5zYQ==
https://warwick.ac.uk/fac/sci/dcs/people/nasir_rajpoot/
https://cie.kfupm.edu.sa/people/faculty/dr-ali-nasir/
https://newman.ac.uk/staff/staff/adnan-qureshi/
https://pure.roehampton.ac.uk/portal/en/persons/touseef-tahir/
https://www.linkedin.com/in/dr-safdar-ali/?originalSubdomain=pk
https://www.linkedin.com/in/ahmad-usman-76631318/?originalSubdomain=pk
https://www.uis.no/en/profile/2560

. O=—0

o e
o
L Bl CP JOURNAL OF

ENGINEERING AND TECHNOLOGY

National Members
Dr. Kashif Zafar
Professor,
National University of Computer and Emerging Sciences, Lahore, Pakistan

Dr. Ayyaz Hussain
Professor,
Quaid-e-Azam University, Islamabad, Pakistan

Dr. Arfan Jaffar
Professor, Dean FOCS&IT,
Superior University, Lahore, Pakistan

Dr. Zahoor Jan
Professor, Vice Chancellor,
Dir University, KP, Pakistan

Dr. Sohail Masood Bhatti
Professor,
Superior University, Lahore, Pakistan

Dr. Syed Abdul Rehman Kashif

Chairperson,

Department of Electrical Engineering, University of Engineering and Technology, Main Campus,
Lahore, Pakistan

Dr. Kamal Shahid
Assistant Professor,
Department of Electrical Engineering, University of the Punjab, Lahore, Pakistan

Dr. Yagoob Javeed

Associate Professor,

Department of Electrical Engineering, COMSATS University Islamabad (CUI), Lahore Campus,
Pakistan



o_/'o
L Bl CP JOURNAL OF

ENGINEERING AND TECHNOLOGY

Copyright
© 2025 UCP. All Rights Reserved.

All articles published in the UCP-JEIT can be quoted in future research with due acknowledgement and the opinions
expressed in published articles are those of the contributors.

Subscription Charges National: PKR 1000 per issue
International: US$ 200 per issue



. O=—0

o e
o
L Bl CP JOURNAL OF

ENGINEERING AND TECHNOLOGY

Acknowledgment

The Editorial Board of the UCP Journal of Engineering and Information Technology extends heartfelt
appreciation to all those who have played crucial roles in bringing Volume 3, Issue 2 to fruition. We sincerely
recognize the invaluable contributions of our esteemed researchers/authors, whose dedication to advancing
knowledge has enriched this inaugural edition.

We also extend our gratitude to the diligent reviewers whose expertise and insightful feedback have ensured
the quality and rigor of the articles published herein. Your commitment to the peer-review process is deeply
valued.

Furthermore, we thank all individuals involved in the publication process, including editorial staff,
copyeditors, and designers, whose unwavering support and tireless efforts have been indispensable.

Without the collective dedication of these individuals, the publication of Volume 3, Issue 2 of the UCP Journal
of Engineering and Information Technology would not have been possible. We anticipate continued
collaboration and the exploration of new frontiers in the realm of engineering and information technology.

Warm regards,

Dr. Muhammad Amjad Igbal

Editor-in-Chief

UCP Journal of Engineering and Information Technology

Vi



. O=—0

o e
o
L Bl CP JOURNAL OF

ENGINEERING AND TECHNOLOGY

Disclaimer

The views expressed in these articles are solely those of the respective authors and do not necessarily reflect
the views of the Editorial Board or the management and staff of the University of Central Punjab. While every
effort has been made to ensure the accuracy of the information provided by the authors, the Editorial Board
does not accept any responsibility for any errors or omissions or breach of copyrights, if any.

Every effort has been made to ensure the accuracy and reliability of the information presented in the articles.
However, the Editorial Board and the University of Central Punjab make no representations or warranties
regarding the completeness, accuracy, or suitability of the content. Readers are encouraged to exercise their
judgment and discretion when interpreting and applying the information contained in these articles.

The UCP Journal of Engineering & Technology is committed to upholding the highest standards of academic
integrity and ethical publishing practices. Any concerns, questions, or requests for clarification related to the
content published in this journal should be directed to the respective authors, who bear full responsibility for
their work.

We appreciate your understanding of this disclaimer and hope that you find the content within this journal
informative and thought-provoking.

Vil



ENGINEERING AND TECHNOLOGY

Table of Contents
Article Titles

Author Names

Control Strategies for Smart Charging of
Electric Vehicles from a Grid Perspective:
A Review

Muhammad Anique Aslam

Multi-Class Brain Tumor Detection Using
Transfer Learning and Interpretable Deep
Models

Muhammad Asif Feroz, Anam Safdar Awan, Fareeha Batool, Narges Shahbaz, Anam
Murtaza, Kamran Ali

End-to-End Motorcycle Violation
Detection with Region-Specific Automatic
License Plate Recognition

Mohamed Rafi Atheek, Mohamed Buhary Fathima Anizul Fathool, Atif Ishaq Khan

Optimizing Breast Cancer Screening
Outcomes in Dense Breasts: Diagnhostic
Performance, Cost-Effectiveness, and
Implementation of Supplemental
Modalities

Malaika Arif, Imran Ahmad, Fatima Abbas, Sunbal Faraz Hayat

Behavioral and Deception-Driven Cyber
Defense Management in SOCs Using
Digital Decoys, MI-TRE ATT&CK, and

SOAR

Salman Ghani Virk, Atif Ali, Syed Muzammil Hussain, Saba Nadeem, Hina Naseem,
Zulgarnain Fareed

viii

Pages

01-08

09-20

21-30

31-41

42-50



Date available online: 09-01-2026

Vol. 3, Issue 2 (July — December 2025)

This is an open-access article.

DOI: https://doi.org/10.24312/ucp-jeit.03.02.459

Control Strategies for Smart Charging of Electric

Vehicles from a Grid Perspective: A Review

Muhammad Anique Aslam?
Department of Electrical Engineering, University of Engineering and Technology, Lahore-54890, Pakistan (e-mail: maniqueaslam@uet.edu.pk)

Corresponding author: Muhammad Anique Aslam (e-mail: maniqueaslam@uet.edu.pk )

ABSTRACT

Electric vehicles have emerged as an alternative way to reduce fossil fuel consumption, which is the
cause of increasing environmental, economical and geopolitical problems. This paper reviews the
strategies for charging electric vehicles smartly from the viewpoint of the grid. These strategies are
classified into three categories. The strategies at the component level discuss the necessary aspects
of batteries, their charging methods, and chargers for smart charging purposes. The strategies on the
system level are discussed under the heads of unidirectional and bidirectional power flow strategies.
Unidirectional power flow strategies manage the power flow from the grid to electric vehicles for their
charging. The bidirectional power flow strategies, apart from charging the electric vehicles, also use
their battery storage for grid support. Also, the strategies that can be deployed at the operational level
are discussed. These strategies, on the one hand, tend to alleviate the stressful impacts of increasing
the load of charging the electric vehicles on the grid, and on the other hand, use the energy storage
capability of the electric vehicles for grid support.

INDEX TERMS Electric Vehicles, Smart Charging, Power Flow Control of Electric Vehicles,

Centralized Control, Decentralized Control

I. INTRODUCTION

Fossil fuels have been the main source of energy
throughout the growth of human civilization. Increasing
industrialization, technological advancements, and
machine dependent lifestyle over the past few decades
have stressed fossil fuels to a dangerous level. This has
resulted in various environmental, economical and
geopolitical problems. The greenhouse gas emissions
have increased to a hazardous level. The prices of
fossil fuels are increasing and becoming more and more
shaky. Above all, the demand for fossil fuels, especially
oil, has resulted in terrible peace-related problems,
leading to the usage of oil as an economic weapon and
the instability of oil-producing countries. So, naturally, the
trend has shifted towards the use of alternative sources
to meet human needs [1], [2]. The usage of Electric
Vehicles (EVs) is one of the attractive options for this
purpose.

The usage of EVs reduces oil consumption, resulting
in less greenhouse gas emissions. Also, the noise
pollution is reduced. It reduces oil imports of a country,
resulting in an improved economy. The cost per
kilometer for an electric drive is less than that of an
internal combustion engine. So, energy is used more
efficiently. The energy stored in the batteries of EVs
can be used to support the grid in terms of voltage and
frequency regulation, peak load shaving, and tracking of
Renewable Energy Sources (RESs). As a result, the
number of EVs is increasing continuously [3]—[5].

From the grid perspective, EVs act as a load while
charging. Studies have shown that the environmental,

1

economical and grid-related benefits of EVs can be
achieved if they are charged smartly with respect to the
grid. If not charged smartly, a fleet of EVs may increase
the peak load. This results in increased power demand,
higher transmission losses, heating of transmission
equipment, and ultimately high costs [6], [7]. With
deregulated electricity markets, EVs should be charged
smartly. Otherwise, they are of no economic benefit to
the owner [8]-[10]. An EV powered by a coal-based power
plant produces more pollution than an ordinary fossil fuel-
based vehicle [11]. In short, EVs would do more harm
than good if not charged smartly [12].

This paper reviews smart charging strategies of EVs
from the grid perspective. The aim is to reduce the
burden of adding an extra load of vehicle charging to the
grid, as well as to use the storage capacity of the battery
for grid support. The strategies are described under
three major categories.

In  Section IlI, component-based strategies are
discussed. In Section lll, strategies at the system level
are described. In Section IV, strategies at the
operational level are described. Finally, in Section V, the
conclusions of the whole discussion are drawn, and an
outlook is presented.

II. STRATEGIES AT THE COMPONENT LEVEL

No matter how smart the charging strategies are, nothing
can be gained if the EVs are not able to cope with these
strategies. Therefore, the components of the EVs should
be able to comply with the smart charging strategies. This
section discusses different aspects of the batteries, their
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charging methods, and chargers that are essential for
smart charging.

From the grid perspective, batteries should have high
efficiency, high energy density, high charging and
discharging power, and smooth charging and
discharging characteristics. High efficiency reduces
energy losses. High energy density imparts flexibility of
storage. High charging and discharging power make it
possible to charge the battery rapidly during off-peak
hours and deliver large amounts of power to the grid when
required. Smooth  charging and  discharging
characteristics are desirable for maintaining good power
quality [13].

Initially, lead-acid batteries were used, but these were
dropped due to low energy density and environmental
hazards. Then came the Nickel batteries with higher
energy densities as compared to the lead-acid batteries.
But these batteries have low efficiency, high self-
discharge, and memory effect. Nowadays, lithium-ion
batteries are used. These batteries have relatively high
energy and power density and are capable of fast
charging. Research is going on to improve the batteries
from the grid and customer perspective [14], [15].

There are different ways to charge the battery. The
most common method is constant voltage charging. In
this method, the voltage is kept constant during the
charging. The current is very high at the start and
gradually falls to a very small value. The problem with
this method is that it requires very high power at the
start. The constant current method maintains a constant
current during charging by changing the charging
voltage. This method requires a complex method of
monitoring temperature, voltage, and time to determine
the cut-off. A better choice is the constant current
constant voltage method. In this method, initially the
battery is charged at constant current (battery voltage
rises), and when the voltage reaches a predefined value,
the charging method is shifted to constant voltage (now
the current falls). This method is used for fast charging
[16].

Instead of providing continuous voltage or current,
these may be provided in the form of pulses. The width of
the pulse is adjusted to meet the charging rate. A certain
rest period is provided between the pulses to allow the
chemical reaction to keep pace with the charging, thus
avoiding the gas formation. This effect is strengthened
by providing negative pulses. The selection of an
appropriate charging method depends on local
conditions like battery characteristics, charging circuits,
driving routine, and grid constraints [14].

Charging is done through specialized power electronic
circuits called chargers, which may be built inside the
vehicle (on board) or outside (off board). On-board
chargers are small, of low power rating, and used for
slow charging. Off-board chargers are bigger in size, of
high-power rating, and usually used for fast charging.
These chargers use different control techniques to
implement different charging processes and special
circuits to lessen the grid impact of vehicle
electrification. Typical examples include filters to reduce
harmonics and snubbers to reduce inductive voltage

spikes. The choice of a charger depends on the battery
charging characteristics, driving schedule, and grid
constraints [17].

lll. STRATEGIES AT SYSTEM LEVEL

This section discusses the strategies that can be opted
for on the system level for charging the EVs smartly
from the grid frame of reference. Such strategies can be
categorized into unidirectional and bidirectional power
flow strategies as described below.

A. UNIDIRECTIONAL POWER FLOW STRATEGIES

These strategies treat EVs as loads taking electricity
from the grid and charging the EVs. They are broadly
classified into centralized and decentralized strategies
[11], [18]. Some examples are as follows.

1) Centralized Strategies

A central unit controls the charging of each EV.
Centralized (also known as direct) strategies are simple
to implement but involve high computational effort,
extensive communications, and large delays. Also, there
are issues of data privacy and hacking. So, these
strategies are not appropriate for large systems [11],
[18]. Some of the commonly used strategies are
discussed below.

A Simple Strategy for a Charging Station

In a simple charging strategy, a centralized
communication system inputs some data each time a
new EV arrives, such as the arrival and departure times
of the EV, the state of charge (SoC) of each battery, the
capacity of the battery, and the extent to which the
battery should be charged. This data is used to
formulate an optimization problem to minimize the
power losses under the constraint of charging the
battery to the desired SoC within the given time
schedule without exceeding the maximum power limit of
the charging station. In this way, optimized charging
schedules and charging rates are determined. Such a
non-linear optimization problem can be solved by
sequential quadratic optimization [19], [20].

Fuzzy Logic-Based Strategy

The fuzzy logic technique uses linguistic variables to
define a system, which are the words of a natural
language, e.g., the linguistic variable for an air
conditioning system may be defined as “temperature”.
Each linguistic variable is decomposed into various
terms, e.g., cold, warm, etc.,, to qualify it. These
variables are then quantified using membership functions,
e.g., a numerical value is assigned to “cold"
temperature. This process is called fuzzification. The
interaction of these variables is assessed through
different rules by an inference engine, e.g., if the
temperature is warm, a command for cooling should be
issued. Defuzzification of these assessments
determines the output [21], [22].

Fuzzy logic based charging controller can be used
to ensure a minimum network voltage while charging the
EVs.The required input linguistic variables are the
minimum bus voltage (obtained by power flow solution),
SoC of the batteries (provided by the communication
system between the EV and the battery), and electricity
price (provided by the utility). These inputs are fuzzified
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and assessed through knowledge-based rules by the
inference engine to provide fuzzy charging levels.
Defuzzification of these fuzzy charging levels results in
crisp charging levels of the batteries. If these charging
levels are maintained, the network voltage does not fall
below a minimum value (usually 0.9 p.u.). For example,
charging levels are reduced at peak load when the
system is more vulnerable to voltage drop [23], [24].

As this algorithm is based on linguistic variables and
general rules of system behaviour, it can be easily
extended. As an example, the Vehicle to Grid (V2G)
option may be added by introducing a “discharge”
linguistic variable, which can be used to control the
discharge of batteries for the grid support if surplus
storage is available [24], [25].

Valley Filling Algorithm

The off-peak hours appear as a valley in the load profile
of a network. Stress on the grid caused by the charging of
EVs can be reduced by charging the EVs during the off-
peak hours. Such a strategy is known as the valley-filling
algorithm, which can be carried out in the following steps
[26]-[28].

1) In the first step, the total charging power
required by the EVs at each time step is estimated.
This can be done by developing some stochastic
models based on historically available data. Then
the surplus power at the ki time step (Ps’;r,,) is
calculated as
k _ T k
Ps-m'p - Pgrol::j - Pconv (1)

where (PZ%¥) is the maximum conventional load
and (PX,.) is the conventional load at the kth time

step. After that, the capacity margin index at the kth
time step (CMX) is calculated as

PE
ki'i" (2)

demand

CMF =

Where (PX,. .na) is the charging power demanded
by the EVs at the k" time step and is equal to the
sum of the charging powers of all the EVs
connected at that time step. The time slot with the
highest capacity margin is selected to charge the
EVs. This ensures that the deepest point of the so-
called load valley is filled first.

2) The charging priority index at the ki time step
for the nt" EV (CPX) is calculated as

Ei.‘

CPrF = W.ifﬁ sksI (3)
" 0,else
where EF is the remaining charging energy

required at the ki"time step for the n"EV, Tk is the
remaining number of time intervals at the ki time
step for the n" EV, At is the duration of one time
slot, and P, is the power of the charger of the nt
EV. Moreover, IS andI¢ denote the serial number of
the time step of the connection and disconnection

of the EV, respectively. The EV with a higher
charging priority index means it has a high priority
for charging in a given time slot, and vice versa. It
can be seen that the EVs that are more discharged
and/or have less charging time are given high
priority. If the surplus power is enough to charge all
the EVs in the selected time slot, all the EVs are
connected. Otherwise, EVs are connected
according to their charging priority.

3) The charging energy required and the time left
for each EV are determined. If all the vehicles have
zero charging energy required and/or the end of the
time is reached, the program is terminated.
Otherwise, the next iteration begins with the first
step.
It should be noted that the calculations of (P%,,) use
(Paxy. This ensures that the valleys are filled no higher
than the peak value of the conventional load. The
underlying assumption is that the EVs can be charged
by using the energy available in the gaps between
(Pmaxy and (PX,,) But if some vehicles remain
uncharged at the end of the cycle, a value higher than
(Pex) The value should be used. The lower this value,
the lower the stress on the grid. One way to optimize
this value is the dichotomy method as described in [29].
B. DECENTRALIZED STRATEGIES
In decentralized (also known as indirect, local, or
distributed) strategies, each part of the system,
particularly EVs, takes part in decision-making. So,
computations and communications are reduced as
compared to the centralized strategies. This makes
these strategies attractive for large fleets of EVs [11],
[18]. Some of the strategies are discussed below
Offline Heuristic or Rule-Based Strategy
The algorithm of such a control strategy determines the
hours with the lowest electricity price and the charging
power patterns to charge the battery in that particular
time span without exceeding the load limit of the house.
Specific case studies for price and peak load reduction
by using this algorithm can be found in [20] and [30].
This algorithm is mostly used for simple systems and
does not take into account the charging of all the
vehicles in a particular network [20]. It has a high
computational time, especially for complex systems [24].
It is a decentralized control and does not take into
account the charging of all the vehicles in a particular
network [20], [31].

A typical offline heuristic algorithm takes into account
the daily load profile of a house, total power allowed by
the utility, energy prices, and the arrival and departure
hours of EVs. Analytical relations are used for the
calculations of the battery parameters, e.g., SoC,
voltage, current, etc.

First of all, the time duration for which the EV is
available for charging is determined by the arrival and
departure times. This time duration is sampled into time
slots of equal length. The power available for charging
the EV is calculated considering the power allowed by
the utility and the losses of the charger. Different
charging powers can be set for the EVs. Then the time
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slots are sorted in ascending order of the energy prices.
The time slot with the lowest energy price is selected for
charging the EV. Then the current SoC of the EV is
determined using analytical expressions. If the current
SoC exceeds the desired SoC, the algorithm terminates.
Otherwise, the voltage and the current are determined
from the analytical expressions of the battery. If the
battery current exceeds the nominal current, the battery
is charged at the nominal current. Otherwise, the
battery charges at the calculated current. Afterwards, the
SoC is calculated, and the algorithm starts at the next
time slot with the next lowest price. In this way, the
charging is done at the lowest priced time slots. So, the
charging price is minimized, and the peak load is
avoided to the maximum extent [30].

A Price-Based Routing Mechanism for Charging Stations
Charging patterns of EVs are randomly distributed in
temporal and spatial domains. This puts a non-uniform
stress on charging stations. For example, a charging
station at a particular site may be more loaded at a
particular time than the other one. This leads to
inefficient service of charging stations, high power
losses, and congestion situations from the grid point of
view, as well as inconvenience for the customers [32].

To avoid all these, a routing strategy can be
employed. When the vehicle arrival rate at a particular
charging station exceeds a specified limit, an increased
price is offered by the charging station. This will
encourage the customers to go to a nearby station, thus
increasing the uniformity of load distribution. For each
diverted vehicle, a penalty is imposed on the charging
station as well. This is done to ensure the best efforts of
the charging station to satisfy the customers. With this
vehicle diversion, a communication system is designed
to communicate between the vehicles and charging
stations about the available locations and prices. A
game theoretic model is developed where the operator
of charging stations acts as one player (leader) and EVs
act as another set of players, which respond to the
former player (followers). Each player opts for certain
actions (called “strategies" in game theory) which result
in certain outcomes (called “payoffs" in game theory).
The strategy of the leader, i.e., operator of the charging
stations, is to offer prices to earn maximum profit (leader
payoff) by maximizing the number of customers and
minimizing the diversions, keeping in view the grid
constraints. In response to the leader, the followers, i.e.,
EVs, opt for a strategy of picking those charging
stations where charging is least expensive (follower
payoff) [33], [34].

Multi-Agent System-Based Strategy

A multi-agent system can be used for charging a large
number of EVs (in the range of millions) in a
decentralized manner. This strategy considers the EV
charging system as a set of autonomous agents. An
agent is an entity (physical or virtual) that senses its
environment and reacts in a predefined manner to attain
certain goals. In a multi-agent system, various agents
interact with one another following certain rules to
achieve specialized goals. A properly designed multi-
agent system is robust (i.e., tolerant to faults) and modular

4

(i.e., new agents can be added for enhanced abilities)
[35], [36].

In a typical implementation, the system can be
classified into three agents, namely charging stations,
responsive EVs, and unresponsive EVs. Responsive
EVs are those that can adjust their charging schedules
in accordance with external constraints, e.g., energy
prices, voltage limitations, etc. Unresponsive EVs have
rigid charging schedules. The algorithm is carried out in
the following steps [11].

1) In the 1st step, the arrival of a new EV is
monitored. If there is a new EV, its charging is
planned by referring to the 3 step. If it is the first
time step of the algorithm cycle (usually one day),
the forecasting is done by executing the 2™ step.

2) In the 2" step, the forecasting of renewable
energy generation and the demand of
unresponsive EVs is made. This can be based on
previously available data. The conventional load
(i.e. without EVs) profile comes from the distribution
grid operator. Then the total power demand on
conventional resources at each time step for each
feeder is given by:

Scheduled Responsive EV Load

+ Forecasted Unresponsive EV Load

+ Forecasted Conventional Load

— Forecasted Renewable Energy Generation

and the virtual energy price for each time step for
each feeder is given by:

Power Demand

Power Rating of the Feeder X Profit Factor

Profit factor can be linear, quadratic, or any other
function, depending on revenue targets. It should
be noted that this price is a virtual price and does
not reflect the actual utility price. It can be seen that
the virtual price increases with the demanded
power. Such a pricing strategy encourages the EVs
to charge at low price time steps, which are the time
steps of off-peak loads and/or high renewable
energy generation.
3) The 3 step decides the charging schedule of
each responsive EV on first come first serve basis.
The objective is to minimize the product of the
instantaneous charging power demand of the EV
and virtual cost at that time step over the specified
duration of charging.

The constraint is that the sum of the instantaneous
charging power demand of the EV in the specified
duration should be equal to the desired charging
capacity i.e. the particular EV should be charged to
the desired capacity in the available duration.
Moreover, the instantaneous charging power
demand of the EV should not exceed the nominal
power rating of the charging station.

After the EV is scheduled, the power demand and
energy price for each time step and each feeder
are calculated again, as done in the second step. If
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such an update of energy prices is not done, each
new incoming EV will prefer to get charged at the
lowest energy price points. If this is allowed to go
on, the load at these points will continue to
increase, and hence the stress caused by these
points on the grid will increase as well. In the worst
case, these valley points may become the peak
load points. Moreover, such sequential updates
would incentivize the early-coming responsive
vehicles.
4) After scheduling each responsive EV, the
network is continuously monitored. This can be
done by having measurements in real time or
performing a power flow analysis. If all the
measurements, e.g., voltages, thermal limits, etc.,
are within the specified limits, the monitoring is
continued until the end of the algorithm cycle is
reached, and the algorithm starts again from the
first step.
Meanwhile, if some new EV comes to the grid, its
schedule is determined as stated above. In case
something wrong happens resulting in
unacceptable variations of the voltages or thermal
limits, etc., the previously determined power
demand and charging schedules are nullified. This
may be the result of some unexpected change in
production or demand. The remaining charging
power demands of all the vehicles are determined.
The charging station determines the power required
to be rescheduled to solve the problem. Each
responsive EV is rescheduled again. After
rescheduling a vehicle, network conditions are
monitored. If the problem is solved, no further EV is
rescheduled. Otherwise, rescheduling of the next
EV is done. This continues until the rescheduled
power is zero or there is no EV left. As such, a
condition is not the fault of the customer, no extra
charges are applied for rescheduling. Some
algorithms calculate the schedules at each time
step to avoid such network problems, but this gives
a high computational load to the algorithm.
C. BIDIRECTIONAL POWER FLOW STRATEGIES
Due to the presence of batteries, EVs act as spatially
and temporally distributed energy storage. The idea of
bidirectional power flow strategies is to use this
available storage from the grid perspective, along with
charging the EVs. The power of batteries can be used
for maintaining the frequency and voltage, i.e., regulating
the active and reactive power flow, preventing the line
losses and transformer stress by providing local
generation, providing the spinning reserve, harmonic
filtering, tracking the RESs, and peak load shaving. But
this is done at the cost of complex control techniques,
changes in network operation and structure, high
computational effort, large communication overhead, and
complex fault protection. Moreover, the battery
degradation is enhanced due to the increased number
of charge/discharge cycles. As a result, the economic
analysis of a particular charging strategy is essential.
The bidirectional power flow strategies can be broadly
classified into individual-based strategies and

aggregator-based strategies [37], [38].

1) Individual-Based Strategies

These are very simple strategies that deal with each EV
on an individual basis. When an EV is connected to the
grid, the owner enters the final SoC and departure time.
The load curve of the house and the electricity price
curve are also made available. Such curves are based
on measured or estimated values. The controller
allocates the charging and discharging time slots based
on the fact that the EV should be charged in low price
hours and discharged at high price hours, provided that
the EV is charged to the desired level at the end of the
charging period and the SoC limitations of the battery are
not violated [8], [39].

2) Aggregator-Based Strategies

The storage capacity of a single EV is very small from
the grid's point of view. Using EVs individually for grid
regulation is complex in terms of control, exhaustive in
terms of communication, and less economical in terms
of storage capacity and flexibility. So, many EVs are
grouped and controlled as a whole. This is the essence
of aggregator-based strategies [2], [40]. Some examples
are as follows [40], [41].

Strategies Based on Load Frequency Control Signal

First of all, the current SoC of each EV is measured.
Then the required SoC for the scheduled driving routine
is estimated, keeping in view the charging routine,
battery capacity, and system efficiency provided by the
vehicle owner. If the required SoC is below the current
SoC, it means the vehicle has surplus energy, and it can
participate in V2G operation. Otherwise, the vehicle is to
be charged [42].

In the second step, the participating power of the
aggregator is determined by a multi-objective
optimization problem to maximize the profits earned by
V2G operation and minimize the tracking error of the
load frequency control signal. The constraints are that
the current SoC of each vehicle should not go below the
SoC required for the driving demand during the up
frequency regulation and above the maximum SoC limit
during the down frequency regulation.

In the next step, the aggregator's participating power
is allocated to each EV, which is to be charged or
discharged. The objective is to minimize the change
in the SoC of each EV under the constraints that the
sum of individual vehicle allocated powers is equal to
the participating power of the aggregator without
exceeding the maximum charging/discharging power
rating and without violating the SoC limitations of each
battery [40], [43].

Strategies Based on Integration of Renewable Energy
Sources

Probability density functions of driving and charging
routines are determined based on available statistical
data, and hence, a stochastic model for the power
requirement of EVs is determined. Similarly, the
available data for solar irradiance and wind speed, along
with the respective plant capacities, help to model the
output power of RESs. Network operators provide load
and frequency regulation data on the basis of which
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respective forecasts can be made. Frequency regulation
data is an indication of the grid power requirement as a
positive or negative reserve.

When a new EV arrives, its SoC is measured, and the
owner is prompted to input the charging duration. After
that, the grid power, power from RESs, and frequency
regulation data are estimated. This data is fed to a
controller, which determines the charging priorities. High
priority means high charging power and vice versa. As
different EVs have different arrival times, SoC and
charging durations, different charging/discharging
powers are assigned to these. For example, a vehicle
with low initial SoC and a small charging duration
requires high charging power, and it is unable to
contribute to V2G operation. On the other hand, a
vehicle with a high initial SoC and a long charging
duration requires less charging power and can wait for
off-peak and high renewable energy production times. It
can be discharged during peak load times for grid
contribution. Such  vehicles are incentivized
economically by dynamic pricing [?], [44], [45].
Strategies Based on Peak Load Reduction
Each registered EV owner is identified with a unique
radio frequency identification tag. Whenever an
authorized EV enters a charging station, the owner is
prompted to specify its final SoC and departure time.
The technical details, such as system efficiency, battery
type, etc., can be extracted from the tag.

Based on this information, the charging time of the EV
is estimated. If the charging time exceeds the departure
time, the owner is prompted. The electricity price curve
is fed to the controller, which is regularly updated based
on available electricity market data. The price curve is
guantized into a number of small intervals (usually 15
minutes) during which the price is assumed to be
constant. Based on the charging time and electricity
price, the cheapest time intervals are selected. In this
way, the cheapest possible charging and peak load
reduction are ensured.

If the owner allows for V2G operation, the time
intervals with the highest price are determined for
discharging under the constraint that the EV achieves its
desired SoC at the moment of departure, and SoC
limitatons are not Vviolated. Optimization of
charging/discharging of EVs for the electricity price
implicitly implies the optimization with respect to load
demand [6], [46].

IV. STRATEGIES AT OPERATIONAL LEVEL
The above-mentioned control strategies involve EVs
either at the component level or system level. Strategies
can be developed at the operational level that can
manage the charging of the EVs from a managerial point
of view. A few are discussed below.
1) The discharged battery bank can be swapped
with the charged one. This strategy adds enormous
flexibility to EV scheduling but comes with cost,
infrastructure, and regulation problems [14], [47].
2) The routes of EVs in a particular area are
optimized and allocated efficiently to the available
charging stations. This balances the load on

charging stations and enables predictive modelling of
charging behaviour. However, this approach is
limited to a particular area and requires high
computational effort for route modelling [48], [49].

3) EVs charged by an aggregator can be
scheduled to share the energy stored in the batteries
among themselves. EVs being charged in the homes
can be used to provide electricity for the home
during peak loads or faults, etc. This is called
vehicle-to-home (V2H) operation [50].

4) Apart from the batteries, alternative energy
storage systems, e.g., ultracapacitors and hydrogen-
based energy storage systems, are under
investigation [51], [52].

5) Apart from the physical connection for charging,
electromagnetic phenomena can be used to charge
the EVs in a wireless manner. This strategy has the
advantages of safety and durability, but it has low
efficiency and high power losses [53], [54].

V. CONCLUSIONS

The stress on fossil fuels has continuously increased
over the past few decades, resulting in various
environmental, economical and geopolitical problems.
Electric vehicles can be used to reduce this stress if
charged smartly. If not charged smartly, the vehicle
electrification will be more harmful than beneficial. This
paper discusses the strategies for smart charging of
electric vehicles from the grid perspective. This means
that the discussion on one hand is on the ways to
reduce the burden on the power grid when an additional
load of electric vehicles is added, and on the other
hand, to use the energy storage capabilities of electric
vehicles for grid support. As the first step, the selection
of components for smart charging is discussed.
Batteries, their charging methods, and chargers of
different types are described. Then the strategies on the
system level are discussed, which can be broadly
classified into unidirectional and bidirectional power flow
strategies. Unidirectional power flow strategies charge
the electric vehicles from the grid, whereas the
bidirectional power flow strategies not only charge the
electric vehicles from the grid but also discharge them
to support the grid when needed. Unidirectional power
flow strategies are further classified based on
centralized and decentralized strategies. Centralized
strategies manage the charging of electric vehicles from
a central control unit, whereas in decentralized
strategies, the intelligence is distributed among the
various components of the whole system, particularly
the electric vehicles. The bidirectional power flow
strategies can be split into individual and aggregator-
based strategies. Individual-based strategies consider
each electric vehicle on an individual level, whereas
aggregator-based strategies consider a fleet of electric
vehicles. Since the storage capacity of a single electric
vehicle is small for the grid, the aggregator-based
strategies are practically useful. In the end, some new
ideas like battery swapping, route optimization, battery
energy sharing, vehicle to home concept, usage of
alternative energy storages and inductive charging are
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discussed.

A next step can be to gather the research work done
so far on these new ideas and to discuss their practical
applicability. Various optimization techniques like
genetic algorithm, particle swarm algorithm, interior point
method, and bi-level programming, etc., which are
usually used to implement these charging strategies, can
be studied and compared as an extension of the present
discussion. Moreover, the strategies outlined here can
be used to improve the situation of electric vehicles in
different case studies to bring pleasant effects for the
grid integration of vehicle electrification.
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ABSTRACT

Accurate brain tumor detection remains critical yet challenging due to diagnostic complexity and variability in
MRI interpretation. This study proposes a deep learning approach for automated multi-class brain tumor
classification using transfer learning (TL). Three pre-trained CNN models, ResNet50, InceptionV3, and VGGL16,
were adapted and evaluated on a curated MRI dataset of 7,000+ images. Preprocessing, feature extraction, fine-
tuning, and integration of Explainable Al (Grad-CAM, LIME, SHAP) ensured robust and interpretable results.
ResNet50 achieved the highest performance with 98% accuracy, 0.92 F1-score, and 0.96 AUC, outperforming
the other models across all metrics, with strong convergence and minimal misclassification. ResNet50’s
architecture enabled deeper feature learning and improved generalization. Explainable Al visualizations
confirmed model focus on tumor-relevant MRI regions, enhancing clinical interpretability. The findings position
ResNet50 as an effective and explainable solution for MRI-based brain tumor classification, suitable for future
real-world deployment and further expansion to mobile and multi-center applications.

INDEX TERMS: Brain Tumor Detection, Deep Learning, ResNet50, MRI Classification, CNN, Medical

Imaging, Binary Classification, Tumor Diagnosis.

I. INTRODUCTION

Brain tumors are among the most critical neurological
disorders, characterized by aberrant development
of cells inside or around the brain that perturb normal
brain function [1]. Depending on their nature, brain
tumors are often classed into benign (non-cancerous
and slow-growing) and malignant (cancerous and
aggressive) [2]. According to the International Agency
for Research on Cancer (IARC), more than 126,000
new brain tumor cases are diagnosed annually
worldwide, with over 97,000 deaths attributed to the
disease each year. The World Health Organization
(WHO) further projects a 5% annual increase in brain
tumor cases globally, making early detection and
effective treatment increasingly vital [3; 4].

The early and correct diagnosis of brain tumors
plays a vital role in enhancing patient outcomes,
reducing mortality rates, and planning personalized
treatment strategies [5]. Magnetic Resonance Imaging
(MRI) has evolved as a key imaging technique owing to
its non-invasive quality and ability to obtain superior
resolution soft-tissue contrasts. However, the manual
interpretation of MRI images by radiologists is a time-
consuming process that is susceptible to diagnostic
inconsistencies, inter-observer variability, and potential
oversight, especially when dealing with large imaging

datasets [6; 7].

In the past couple of years, the rise of Artificial
Intelligence (Al), notably deep learning (DL), has
transformed the landscape of medical image analysis
[8]. Al models are now capable of learning complex, non-
linear representations from raw image data, thus
assisting healthcare professionals in decision-making
processes [9]. Among these models, Convolutional
Neural Networks (CNNs) have shown remarkable
performance in a broad variety of computer vision
applications, including classification of images,
segmentation of images, and object recognition in
images. Their success in the biomedical domain has led
to promising outcomes in brain tumor classification,
localization, and segmentation [10].

However, deep CNNSs require substantial labeled data
and computational resources for training from scratch,
which poses a significant limitation in medical imaging,
where curated and annotated datasets are limited due to
privacy concerns, expert availability, and patient
variability. To overcome this challenge, transfer learning
has emerged as a strong alternative. Transfer learning
facilitates the use of pretrained deep learning (DL)
models, generally developed on massive datasets like
ImageNet, to be fine-tuned or adapted for specific
medical tasks with minimal training data and
computational cost.
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Recent investigations have examined the use of CNN
models such as VGG-16, ResNet, Inception, and hybrid
models for the classification of brain tumors. For
example, InceptionV3 was used with ensemble
classifiers to achieve high accuracy on brain MRI scans.
A CNN-SVM combination was employed and achieved
over 95% classification accuracy. The fine-tuned
versions of VGG and ResNet were used to improve
performance. These studies confirm the viability of DL-
based methods but often focus on binary classification
(tumor vs. no tumor) or evaluate a single model
architecture in isolation [11; 12].

Moreover, there are several remaining limitations in
existing literature:

- Lack of comparative analysis across multiple

pretrained CNN architectures using a consistent

dataset and evaluation framework.

- Absence of multi-class classification studies that

distinguish between glioma, meningioma, pituitary

tumor, and no tumor categories, which is essential
for real-world clinical deployment.

- Minimal investigation into the impact of different

transfer learning strategies (i.e., feature extraction vs.

finetuning) under the same experimental setup.

- Limited exploration of resource-efficient models

suitable for deployment in hospitals with constrained

computing environments.

A. MOTIVATION AND OBJECTIVE

This work intends to avert the gaps by setting up a
transfer learning-based deep learning framework that
applies and compares three state-of-the-art pre-
trained CNN architectures, ResNet-50, InceptionV3,
and VGG-16 for multi-class brain tumor classification.
The models are evaluated using a comprehensive MRI
dataset obtained from multiple open-access sources,
including Br35H, SARTAJ, and Figshare, containing
over 7,000 labeled images. Both feature extraction and
fine-tuning strategies are employed to investigate the
effect of transfer learning depth on classification
performance.

Through extensive experimentation and evaluation
using metrics such as F1l-score, accuracy, precision,
and recall, the research seeks to discover the optimum
model configuration for real-world deployment. The
overarching goal is to build an automated, accurate, and
resource-efficient computer-aided diagnostic (CAD)
mechanism for the prompt identification and
categorization of brain tumors, thereby reducing
radiologists’” workload and enhancing diagnostic
confidence in clinical environments.

B. KEY CONTRIBUTIONS
The significant advancements of this work are outlined
as follows:

1) Development of a Transfer Learning
Framework: A robust and scalable deep learning
system is provided for diagnosing brain cancers from
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MRI images, utilizing transfer learning on pre-trained
CNN architectures, ResNet-50, InceptionV3, and
VGG-16.
2) Multi-Class Brain Tumor Classification: The
study addresses a four-class classification problem
involving gliomas brain tumor, meningiomas brain
tumor, pituitary tumors, and no brain tumor
categories. This enhances the clinical relevance of
the proposed system beyond binary classification.
3) Comparative Analysis of Transfer Learning
Strategies: Both feature extraction and fine-tuning
technigues are implemented and analyzed under the
same experimental settings to assess their
effectiveness on medical image classification tasks.
4) Utilization of a Large and Diverse Dataset: A
comprehensive brain MRI dataset comprising over
7,000 labeled images from multiple publicly available
sources (Br35H, SARTAJ, and Fig-share) is curated
and used for training, validation, and testing.
5) Performance Evaluation Using Multiple
Metrics: The models are tested using important
classification metrics that involve precision, recall,
Fl-score, and accuracy, along with confusion
matrices for detailed performance assessment.
6) Design of a Resource-Efficient Al Solution:
The research demonstrates that high-performance
classification can be achieved without training
models from scratch, making the proposed solution
viable for deployment in resource-constrained clinical
environments.
7) Key feature identification using XAl: To
improve the transparency and interpretability of the
model, the Explainable Al (XAl) Grad-CAM model is
used, which has generated heat maps of MRI
images that highlight the regions of the brain tumor.
The rest of this work is organized as follows: Section Il
analyzes relevant work on brain tumor detection using
machine learning and deep learning, noting gaps in the
field. Section Il explains the suggested technique,
including dataset preparation, transfer learning
methodologies (feature extraction vs. fine-tuning), and
model architectures (ResNet50, InceptionV3, VGG16).
Section IV describes the experimental setup, evaluation
metrics, and hardware configuration. Section V
presents the results, with a comparative analysis of
model performance across accuracy, loss, F1-score,
and AUC. Finally, Section VI concludes the study,
discusses clinical implications, and suggests future
directions.

Il. RELATED WORK

Over the last decade, the integration of Artificial
Intelligence (Al) technologies, notably Machine Learning
(ML) and Deep Learning (DL), into medical imaging has
significantly transformed brain tumor detection and
classification methodologies. These innovations have
brought promising advancements in terms of diagnostic
automation, accuracy, and efficiency. However, despite
the increasing adoption of Al in neuroimaging, several
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persistent limitations in current research impede
widespread clinical adoption, including poor model
generalizability, lack of interpretability, computational
inefficiencies, and limited scalability to real-world
medical environments.

Initial approaches in this domain largely relied on
traditional machine learning methods applied to
handcrafted features extracted from MRI images. For
instance, the study Design and Analysis for
Advancements in Brain Tumor Detection Model by using
Machine Learning (ML) Techniques employed classical
ML algorithms to process and classify MRI scans.
Although these models demonstrated a baseline
capacity to differentiate between tumor types, they
struggled with low segmentation precision, high false
positive rates, and poor adaptability across datasets
with different acquisition parameters [12]. These
limitations underscore the challenges posed by manual
feature engineering and rule-based classification
strategies in complex imaging tasks.

To systematically assess developments in this
domain, several literature reviews and meta-analyses
have been conducted. The Systematic Literature
Review on ML and DL from 2013 to 2023 compiles a
decade’s worth of studies and reveals a heavy
dependence on annotated datasets, inconsistent
imaging protocols, and a lack of standardized evaluation
benchmarks. These issues severely limit model
reproducibility and generalization, particularly when
deployed across diverse clinical institutions [13].

Moreover, survey-based studies such as Brain Tumor
Identification and Classification Using Machine Learning
(ML): An In-Depth Survey and Brain Tumor Identification
Using Machine Learning (ML) have highlighted the
evolution of ML in neuro-oncology while identifying
several inherent limitations. These include high intra-
class variance due to morphological differences among
tumor types, inter-scanner variability, and the time-
consuming nature of manual diagnostic processes.
These studies emphasize that traditional ML systems are
often error-prone and inefficient for real-time decision-

making, particularly in  resource-limited clinical
environments [14; 15].
The transition to deep learning marked a

significant leap in model performance, particularly for
feature extraction and classification by using
convolutional neural networks (CNNs). Nonetheless,
several DL-based studies exhibit shortcomings. For
instance, works such as Classification of Brain Tumor
Detection Techniques: A Review and Empowering
Healthcare with Al introduced hybrid Al approaches that
combine multiple ML/DL models. While these
architectures yielded improved accuracy, they suffered
from increased model complexity, higher computational
costs, and difficulty in deployment due to hardware
constraints and the requirement for large annotated
datasets [16; 17].

Other integrative studies, like Brain Tumor Detection:
Integrating ML and DL, explored dual-pipeline systems
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combining traditional ML with CNN-based classifiers.
Although these attempts sought to utilize the best of
both worlds, they resulted in increased training duration,
limited scalability, and suboptimal performance when
applied to multi-class tumor classification scenarios [18].

Deep learning architectures specifically designed for
medical image analysis, such as Inceptionv3 and
ResNet-50, have demonstrated state-of-the-art results
in tumor classification tasks. For example, the work An
Inception V3-Based Glioma Brain Tumor Detection in
MRI Images leveraged deep CNNs for detecting gliomas
with high accuracy. However, the model required
extensive hyperparameter tuning and access to high-
quality, annotated data, making it unsuitable for
deployment in low-resource hospitals [16]. Similarly,
Deep Learning-Enhanced MRI for Brain Tumor
Detection showcased improved feature learning through
DL but faced overfitting issues due to limited sample
diversity and a lack of interpretability mechanisms [19].

Further, the study Optimizing Brain Tumor
Classification with ResNet-50 Feature Extraction
examined the effectiveness of residual networks in
extracting hierarchical features from MRI data. Despite
achieving impressive accuracy metrics, the
computational demands of ResNet-50 present a
practical barrier to its clinical application, particularly in
rural or under-resourced settings [6].

Comparative analyses, such as A Comparative Study
of DL vs. ML, clearly show the superiority of deep
learning in terms of raw performance but also expose
concerns regarding training time, memory consumption,
and lack of transparency in decision-making processes.
These limitations hinder clinical trust and adoption,
especially when models are treated as black-box
systems [17].

The problem of data imbalance and generalization is
also prominent in studies like Identification of
Challenges and Limitations in Detection and
Segmentation of Brain Tumors. These works identify key
challenges, including skewed class distributions (e.g.,
more glioma cases than meningioma), segmentation
inaccuracies, and a lack of robust evaluation
frameworks that cover both tumor detection and multi-
class classification [20].

To improve upon traditional and deep learning
approaches, hybrid models have also been introduced.
Brain Tumor Detection Using Hybrid Machine Learning
Models proposes an ensemble-based ML approach to
enhance predictive accuracy. While performance
improvements were noted, the added complexity and
extended training requirements complicate clinical
deployment timelines and maintenance cycles [18].

From this extensive literature review, it becomes
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TABLE 1: Comparison of Existing Work vs. Proposed Methodology

Study / Reference

Limitations ldentified

Our Proposed Solution

Design and Analysis for
Advancements in Brain Tumor
Detection [12]

Low segmentation accuracy; high
false positives

ResNet50, InceptionV3, and VGG-16
with robust feature learning and
reduced false detection.

Systematic Literature Review on
ML and DL (2013-2023) [13]

Heavy reliance on labeled data;
inconsistent quality

Transfer learning with pre-trained
models lowers annotation
dependency

Brain Tumor Detection Using
Machine Learning: A
Comprehensive Survey [14]

Morphological variation and imaging
inconsistency

Multi-class classification across four
tumor types improves generalizability

Brain Tumour Detection Using
Machine Learning [15]

Time-consuming manual analysis;
prone to error

End-to-end automated deep learning
classification

Classification of Brain Tumor
Detection Techniques: A Review
[16]

Tumor variability impacts detection
accuracy

CNN models trained on diverse
and augmented datasets

Empowering Healthcare with Al
[17]

Limited annotated MRI data;
overfitting risk

Combines large public datasets with
augmentation and regularization

Brain Tumor Detection:
Integrating ML and DL [18]

Complex model integration and
training duration

Lightweight architecture and efficient
transfer learning strategies

Deep Learning-Enhanced MRI for
Brain Tumor Detection [19]

Overfitting on small datasets; poor
interpretability

Standardized dataset and
benchmarking; visual explainability
planned (e.g., Grad-CAM)

An InceptionV3-Based Glioma
Detection [16]

Requires large annotated data and
hyperparameter tuning

Efficient use of public datasets with
less tuning via transfer learning

Optimizing Brain Tumor

Computational cost limits deployment

Balanced performance and efficiency

Classification with ResNet-50 [6]

in clinical settings using fine-tuning

A Comparative Study of DL vs. ML

[17] resource clinics

DL models not feasible for low-

Designed for high accuracy and low
hardware requirements

Identification of Challenges in

Tumor Segmentation [20] errors

Class imbalance and segmentation

Balanced multi-class dataset and
evaluation metrics used

Brain Tumor Detection Using
Hybrid ML Models [18] training time

High complexity and extended

Streamlined transfer learning
framework for quick deployment

Evident that most existing studies focus on binary
classification (tumor vs. no tumor), evaluate a single
network architecture in isolation, or fail to investigate
different transfer learning strategies comprehensively.
More critically, very few works address the problem of
computational  feasibility in  real-world clinical
workflows, especially those involving high-resolution
images and multi-class tumor scenarios [19; 20]. To
address these gaps, our proposed research introduces
a robust and unified transfer learning framework that:

- Performs  four-class categorization spanning
gliomas, meningiomas, pituitary tumor and no tumor
categories.

- Evaluates and compares three state-of-the-art
pretrained CNN architectures: ResNet-50,
InceptionV3, and VGG-16.

- Benchmarks two core transfer learning strategies,

feature extraction and fine-tuning, under a uniform

experimental protocol.

- Emphasizes computational efficiency, thereby

enabling practical deployment in both well-equipped

and resource-constrained clinical environments.

This work aims not only to improve classification
performance but also to bridge the translational gap
between model development and clinical application.
Our approach incorporates real-world constraints and
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focuses on generalizability, interpretability, and
scalability to ensure relevance and impact in actual
diagnostic settings, as shown in Table I.

lll. SYSTEM METHODOLOGY

This section elaborates on the full technique utilized for
the creation of a transfer learning-based brain tumor
classification system employing deep convolutional
neural networks (CNNs). The proposed methodology
tries to solve the shortcomings mentioned in previous
techniques by using the capabilities of three pre-trained
models, ResNet-50, InceptionV3, and VGG-16 on a
large-scale, multi-class MRI dataset. The methodology
is composed of several stages: data acquisition and
preprocessing, architecture adaptation, transfer learning
strategy, training algorithms, optimization methods,
performance evaluation, and integration of Explainable
Al (XAl) for model interpretability.

A. OVERVIEW OF THE PROPOSED FRAMEWORK

The proposed system consists of an end-to-end deep
learning pipeline designed for the classification of brain
MRI images into four diagnostic categories: gliomas,
meningiomas, pituitary tumors, and no tumor. Each
input image undergoes a standardized preprocessing
phase before being passed into one of the selected pre-
trained CNN architectures. The models are adapted
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using transfer learning techniques, either feature
extraction or fine-tuning, to classify tumors effectively with
limited training data. To ensure trust and clinical
acceptance, Explainable Al (XAl) approaches are
incorporated to bring visibility into the model’s process of
decision-making.

B. DATASET DESCRIPTION AND PREPROCESSING

The MRI dataset employed in this study comprises a
combination of three publicly available sources: Br35H,
SARTAJ, and the Fig share repository. These datasets
contain axial T1-weighted contrast-enhanced (T1W-CE)
MRI brain images with corresponding annotations
across four categories. In total, 7,022 images were
collected and layered into training (70%), validation
(15%), and test (15%) subsets to ensure a balanced
evaluation.

Image preprocessing is critical for standardizing data
input across different models and includes the following
steps:

- Resizing: Images are resized to 224x224 pixels for
ResNet-50 and VGG-16, and 299x299 pixels for
InceptionV3 to match the input layer specifications.

- Normalization: Pixel intensity data is adjusted to
the [0, 1] range to ensure uniform input.

- Data Augmentation: Techniques such as
horizontal/vertical flips, zooming, and random
rotations are used to artificially increase the dataset
and enhance generalization.

- Label Encoding: Class labels are single-hot

encoded to meet the categorical output format of
the models.

C. TRANSFER LEARNING STRATEGY
Transfer learning is leveraged to reuse knowledge
acquired from models trained on the ImageNet dataset.
Two approaches are employed:
1) Feature Extraction: The pre-trained
convolutional base is frozen, and only the top
classification layers are retrained on the MRI dataset,
as shown in Figure 1. This method is computationally
efficient and less prone to overfitting.
2) Fine-Tuning: A portion of the higher-level
convolutional layers is unfrozen and retrained

alongside the classifier. This allows the model to
learn domain-specific features relevant to MRI data,
offering better performance when the training data is
moderately sized.

FIGURE 1: Samples of datasets used in training and testing.

D. MODEL ARCHITECTURE ADAPTATION
In this study, three widely recognized pre-trained

Inception V3,
VGG16, ResNet50

Pl _ QL
¢_) - —
= o100

Model Fusion

Input: MRI Scans

Model

Preprocessing lilertarencs

the Data

Post Processing

» Evaluation: Accuracy, F1
ROC Curves

FIGURE 2: Adapted architectures of VGG-16, ResNet-50, and InceptionV3 with transfer learning classifier heads.
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Convolutional Neural Network (CNN) architectures,
Res-Net-50, VGG-16, and InceptionV3, are adapted to
perform multiclass classification of brain tumors. These
designs are chosen for their shown efficacy in large-
scale visual identification challenges and their capacity
to generalize to medical imaging domains via transfer
learning, as seen in Figure 2.

The VGG-16 architecture is a 16-layer deep CNN that
employs a simple and consistent design pattern of
stacked three-by-three 3x3 convolutional layers,
succeeded by max-pooling layers. It is known for its
depth and uniform structure, which makes it both
interpretable and effective for transfer learning. In this
work, the original classifier head of VGG-16 is removed
and replaced with a custom classification block
consisting of a Flatten layer, a fully connected A dense
layer comprising 512 units with RelLU activation,
followed by a Dropout layer (rate 0.5) to mitigate
overfitting, and concluding with a final dense layer
including 4 output neurons and softmax activation to
support multi-class prediction.

The ResNet-50 deep residual network model is a 50-
layer network that introduces identity-based skip
connections, allowing gradients to bypass one or more
layers during backpropagation. This solution directly
tackles the vanishing gradient issue that often impacts
deep neural networks. By facilitating the training of far
deeper structures, ResNet-50 can capture complex and
abstract features within MRI data. In this framework, the
final fully connected layers of ResNet-50 are replaced
with a Global Average Pooling (GAP) layer that follows a
Dense classification layer with softmax activation to
produce class probabilities for the four tumor kinds.

The InceptionV3 architecture is a highly modular CNN
that utilizes inception modules, which perform multiple
convolution operations in parallel (e.g., 1x1, 3x3, 5x5)
within the same layer. This design enhances

E. TRAINING ALGORITHMS AND OPTIMIZATION
Two training algorithms are proposed to guide the
model learning process:

Algorithm  1: Baseline Transfer Learning
Classifier (21) This algorithm initializes the pre-
trained CNN with its convolutional base frozen (feature
extraction), appends a custom classifier head, and trains
only the added layers using categorical cross-entropy.

Algorithm 2: Progressive Fine-Tuning Strategy
(22) This advanced strategy begins by training the
classifier head (as in Algorithm 1), then progressively
unfreezes deeper layers of the convolutional base for
additional training. A small learning rate is maintained to
avoid destabilizing pretrained weights. This staged
unfreezing allows gradual domain adaptation.

Optimization: All models are built on the Adam
optimizer with a learning rate of n= 10, categorical
cross-entropy loss, and accuracy as the main
performance indicator. Regularization methods such as
dropout and early halting are applied to avoid overfitting.
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Algorithm 1 Baseline Transfer Learning Classifier

Require: Pre-trained CNN fp, dataset D, batch size B,
number of epochs N
Ensure: Trained model fy
1: Freeze all convolutional layers of fy
: Append custom classifier head to fp
: forepoche = 1to N do
for each batch (z,y) in D do
i < fo(x)
Compute loss £(7,y)
Update classifier head weights using backpropa-
gation
end for
9: end for
. return fp

(=]

> Forward pass

R A

o0

S

&> Fine-tuned model

Algorithm 2 Progressive Fine-Tuning Strategy

Require: Pre-trained CNN fy, dataset D, number of epochs
N, unfreeze depth d, batch size B
Ensure: Fine-tuned model fy
1: Freeze all layers of fg; append classification head
2: Train classifier head on D for a few initial epochs
3: Unfreeze the top d layers of the CNN base
4: Re-compile the model with a reduced learning rate 17 <
1

5: forepoche =1to N do

6 for each batch (z,v) in D do

7: Perform forward pass and compute predictions
9§+ fo(z)

8: Compute loss £(7, y)

0: Backpropagate and update weights using Adam
optimizer

10: end for

11: end for

12: return fp > Fine-tuned model

F. EXPLAINABLE Al INTEGRATION

To boost model transparency and interpretability, there
are several Explainable Al (XAIl) strategies, such as
Grad-CAM, LIME, and SHAP, offering insights into the
decision-making process of the trained models. The
description of each strategy is given below. As our
dataset is large, LIME and SHAP are computationally
expensive to handle such a large dataset, Grad-CAM
the XAl method, is applied in this framework.

- Grad-CAM (Gradient-weighted Class
Activation Mapping): This approach provides
heatmaps that show the areas of the MRI images most
relevant in the model’s decision-making process. By
visualizing the importance of specific areas of the
brain in relation to tumor classification, Grad-CAM
helps clinicians understand what parts of the MRI
image the model focuses on.

-LIME (Local Interpretable Model-agnostic
Explanations): LIME predicts the model’s behavior
locally, producing interpretable explanations for
individual predictions. This can help explain why the
model classified an image into a particular tumor
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category, providing insights into specific features that
drove the classification.

-SHAP (Shapley Additive Explanations): SHAP
values decompose the model's prediction into the
contribution of each feature (e.g., pixel region) to the
final classification. This global explanation technique
helps quantify the importance of various image
regions across the entire dataset.

Grad-CAM XAl method is incorporated into the model
evaluation phase, where it provides visual and
numerical explanations of the model’'s reasoning for
each prediction, enhancing trust and transparency.

G. EVALUATION METRICS
The proposed models are evaluated using:

- Accuracy: Proportion of correctly categorized
positive and negative instances on brain magnetic
resonance images.

- Precision: Correct True Positive (TP) predictions

per total predicted True Positive (TP).

- Recall: Correct True Positive (TP) predictions per

actual True Positive (TP).

- F1-Score: Harmonic mean of precision metrics and

recall metrics.

- Confusion Matrix: A visual matrix of true labels vs

predicted labels.

- XAl Explanation Consistency: Analysis of the

consistency and reliability of explanations across

different model runs.

These metrics ensure a comprehensive evaluation
across all tumor classes and classification challenges.
The integration of XAl enables robust performance
benchmarking, model adaptability for real-world clinical
deployment, and enhanced interpretability, essential for
gaining clinical acceptance and ensuring patient safety.

IV. EXPERIMENTAL SETUP
In this study, we evaluate four deep learning (DL)
models, CNN, VGG16, ResNet50, and InceptionV3, for
brain tumor detection using a publicly available MRI
brain tumor dataset. Below are the details of the
experimental setup, including dataset description, model
training, and evaluation procedure.
A. DATASET DESCRIPTION
The dataset employed in this work is the Brain MRI
images Dataset, which comprises tagged images of
brain MRIs, with two primary classes: tumor and non-
tumor. The collection comprises pictures of varied
resolutions and kinds of MRI scans, e.g., T1-weighted
(T1W), T2-weighted (T2W). The total count of images is
7022. The photos were separated into training (80%)
and testing (20%) groups to make sure that the dataset
was balanced across the classes.
B. PREPROCESSING
Before feeding the MRI images into the models, several
preprocessing steps were performed:

- Resizing: All the images were scaled to 224x224

pixels to satisfy the input needs of the models.

- Normalization: The pixel values of the images
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were standardized to the range [0, 1] to accelerate the
training process and increase convergence.
- Augmentation: To strengthen the durability of the
models and minimize overfitting, data augmentation
methods such as random rotation, flipping, and
zooming were added to the training set.
C. MODEL ARCHITECTURE AND HYPERPARAMETERS
A basic convolutional neural network (CNN) model
consists of 3 convolutional layers, followed by max-
pooling, and a fully connected layer for classification,
which provides the basis for different models used in the
framework. Resnet-50, VGG-16, and Inception-V3
architectures of CNN were used for the comparison:

-VGG16: A deeper network with 16 layers
comprised of convolutional layers followed by fully
linked layers. Pre-trained weights from ImageNet
were utilized to fine-tune the model (23).

- ResNet50: A residual network with 50 layers was
designed to handle the issue of the vanishing
gradient. It includes skip connections to allow deeper
models to be trained (24).

- InceptionV3: A model designed by Google for
image classification. It uses auxiliary classifiers and
factorized convolutions, which make it more efficient
in terms of both speed and accuracy (25).

The following hyperparameters were used across all
models:

- Learning Rate: 0.0001 for all models.
- Batch Size: 32 images are in a single batch.
- Epochs: 50 epochs were used to train the model.
- Optimizer: Adam optimizer with a learning rate
decay of 0.9.
- Loss Function: Categorical Cross-Entropy was
employed as the loss function for multiclass
classification.
D. TRAINING AND EVALUATION
Each model was trained on the training set and
evaluated on the testing set using several performance
metrics:
- Accuracy: The proportion of  correctly
categorized brain magnetic resonance images.
- Precision: Correct predictions of true positive (TP)
per total of predicted true positives (TP) and False
negative (FN).
- Recall: The correct predictions of True Positive
(TP) per actual True Positive (TP).
- F1-Score: Harmonic mean of precision metrics
and recall metrics.
- Area Under the ROC Curve (AUC): A measure of
the model’'s ability to discriminate between the
classes.

The training was performed on a machine with an
NVIDIA Tesla V100 GPU, which accelerated the training
of the models.

E. EVALUATION METRICS AND VALIDATION

The models were evaluated using the following:

- Confusion Matrix: To understand the distribution
of True Positives (TP), False Positives (FP), True
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Negatives (TN), and False Negatives (FN) for each
model.
- ROC Curve: A graphical representation of the true
positive rate against the false positive rate, used to
visualize the performance across different
thresholds.
- Loss Curve: To observe the convergence behavior
and the extent of overfitting during training.
- Precision-Recall Curve: To assess the balance
between precision and recall, especially in cases of
imbalanced datasets.
F. HARDWARE SETUP
To effectively train and evaluate the proposed deep
learning models, a high-performance computational
environment was utilized. The hardware specifications of
the experimental setup are outlined below:

- CPU: Intel Core i9-10900K, 10-core processor
clocked at 3.7 GHz, providing exceptional single-
thread and multi-thread performance suitable for
parallel data preprocessing and 1/0O operations.

- GPU: NVIDIA Tesla V100, equipped with 32GB of
VRAM, is a contemporary accelerator suitable for
deep learning tasks. The Tensor cores significantly
improve matrix multiplication, hence facilitating rapid
model training and real-time inference.

- RAM: 64GB DDR4 memory provides sufficient
capacity for handling large datasets and many model
instances throughout the training, validation, and
testing phases.

- Operating System: Ubuntu 20.04 LTS, the robust
and widely used Linux version, provides seamless
interoperability with  prominent deep learning
frameworks such as TensorFlow, PyTorch, and
Keras.

This configuration was used to accelerate training
cycles and eliminate computing limitations. It also
facilitates the execution of computationally intensive
activities such as batch loading high-resolution MRI
images into memory and finetuning deep convolutional
networks. The GPU proved crucial in expediting gradient
updates and backpropagation, hence substantially
reducing training time.

G. ACCURACY OVER EPOCHS

An essential metric of a model’s ability to accurately
classify data is accuracy. Figure 3 illustrates the
model accuracy of ResNet50, InceptionV3, and VGG16
during the training process. All models exhibited a
positive learning trajectory; however, the performance
trends varied significantly across architectures.

By the end of the 10th epoch, ResNet50 achieved
a peak training accuracy of 98%, outperforming
InceptionV3 (96%) and VGG16 (95%). This superior
accuracy is directly attributed to the architectural
advantage of ResNet50, which incorporates residual
connections. These connections allow the model to
learn identity mappings, thus minimizing the vanishing
gradient issue that commonly restricts deep networks.

Residual learning allows for deeper architectures
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without degradation in performance, facilitating the
capture of fine-grained features critical for distinguishing
between tumor types. In contrast, while InceptionV3
utilizes inception modules to extract multi-scale features
and VGG16 uses a consistent convolutional structure,
both fall short in comparison to ResNet50’s feature
propagation capacity and representational depth.

Model Accuracy over Epochs

—o— ResNets0 .
VGG16
—a— Inceptionv3 .

0.80

2 4 6 8 10
Epochs

FIGURE 3: Accuracy Comparison.

H. LOSS OVER EPOCHS

Training loss, derived from the binary cross-entropy
function, quantifies the discrepancy between predicted
and actual labels. A declining loss curve signifies
successful learning. As depicted in Figure 4, all models
demonstrate a steady decrease in loss over epochs, but
ResNet50 converged significantly faster and to a lower
value.

Initially, all models began with a high loss (0.6), but
ResNet50’s loss sharply declined to 0.10 by the final
epoch. In comparison, InceptionvV3 and VGG16
plateaued at higher values of 0.12 and 0.15, respectively.
This rapid convergence in ResNet50 can be attributed to
its advanced learning capacity, which stems from both
depth and residual connections that facilitate effective
feature reuse and error signal propagation.

The lower loss indicates better model confidence and
generalization, reducing the likelihood of overfitting or
underfitting—a crucial factor in medical imaging, where
data diversity and feature subtlety are pronounced.

Model Loss over Epochs

—o— ResNetso
VGG16
06 —i InceptionV3

Epachs

FIGURE 4: Loss over Epochs.
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I. CONFUSION MATRIX (RESNET50)

The confusion matrix (Figure 5) presents a thorough
analysis of classification results by comparing
anticipated labels versus genuine class labels. For multi-
class issues such as brain tumor classification, it is a
vital diagnostic tool to assess class-specific model
performance.

ResNet50’s confusion matrix reveals a high number of
True Positives (TP) and True Negatives (TN) across
all four categories: glioma tumor, meningioma tumor,
pituitary tumor, and no tumor. The little misclassification
rate highlights its significant sensitivity (capacity to
identify actual tumor cases) and specificity (ability to
accurately differentiate non-tumor instances).

In therapeutic settings, where false negatives may
delay treatment and false positives might lead to
unnecessary interventions, this high level of accuracy is
very crucial. The reliability of ResNet50’s predictions
indicates its potential as a trustworthy decision-support
instrument in radiological diagnostics.

J. ROC CURVE

The Receiver Operating Characteristic (ROC) curve
(Figure 6) illustrates the true positive rate in relation to
the false positive rate across various categorization
levels. The classification efficacy of a model is visually
represented as a curve.

ResNet50 demonstrated exceptional discriminative
ability between tumor and non-tumor occurrence with an
AUC (Area Under Curve) score of 0.96. The ROC curve
demonstrates robust class separation, remaining far
above the diagonal baseline despite data imbalance.

In high-stakes medical applications, such high AUC
values confirm the model’s capacity to distinguish subtle
variations in MRI scans, which might be imperceptible to
the human eye, thereby enhancing diagnostic accuracy.

Confusion Matrix RESNET

570 27 0 3 300
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FIGURE 5: Confusion Matrix.

17

ROC Curve

1.0+

0.8 -

1=
o
L

True Positive Rate
o
ES
L
\
N,

0.2 -

0.0 1 ROC Curve (AUC = 1.00)

T T T T u T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

FIGURE 6: ROC Curve.

K. PRECISION-RECALL CURVE

The precision-recall curve (Figure 7) gives insights into
the trade-off between precision (positive predictive
value) and recall (sensitivity). It is particularly
informative in cases of class imbalance, which is
common in medical datasets.

ResNet50 maintained a consistently high balance
between precision and recall throughout the range of
thresholds. The large area under the curve (AUC)
indicates that the model sustains high precision without
compromising recall. This is crucial in a medical
context, as high recall ensures tumor cases are not
overlooked, while high precision minimizes the rate of
false alarms.

Such robustness makes ResNet50 well-suited for
deployment in environments where the consequences of
diagnostic errors are significant, such as oncology
departments and neurological clinics.

Precision-Recall

1.0 1

0.9

0.8 1

Precision

0.7 1

0.6

0-5 T T T T
0.5 0.6 0.7 0.8 0.9 1.0

Recall
FIGURE 7: Precision-Recall Curve.

L. F1 SCORE COMPARISON

The F1 score, being the harmonic mean of recall and
accuracy, provides a singular metric for assessing a
model's sensitivity to the balance between these two
measures. ResNet50 achieved the highest F1 score of
0.92, as seen in Figure 8, followed by InceptionV3 at
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0.90 and VGG16 at 0.88.

This result underscores ResNet50’s efficacy in
addressing complex multi-class classification
challenges, particularly when several tumor types exhibit
overlapping visual traits. The equilibrium of its F1 score
indicates that the model does not disproportionately
favor one class over another, an essential attribute for
fairness and equity in medical artificial intelligence
applications.

o F1 Score Comparison

0.8 1

0.6 1

F1 Score

0.4 1

0.2 1

0.0

T T T
ResNet50 VGG16 Inceptionv3

FIGURE 8: F1 Score Comparison.
M. AUC SCORE COMPARISON

Examining the bar graph (Figure 9) that compares AUC
ratings further emphasized the efficacy of each model.
ResNet50 achieved an AUC of 0.96, leading the results,
followed by InceptionV3 at 0.94 and VGG16 at 0.93.

Lo AUC Score Comparison

0.8+

0.6 4

AUC

0.4

0.2

0.0-

T T
ResNet50 VGG16 InceptionV3

FIGURE 9: AUC Score Comparison.

These results validate ResNet50’s reliable
performance across many evaluation metrics and
provide substantial evidence of its suitability for clinical
applications. Its durability and flexibility are shown by its
elevated AUC, rapid convergence, low misclassification
rate, and robust precision-recall trade-off.
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FIGURE 10: Tumor Localization via Grad-CAM.

We used the Grad-CAM (Gradient-weighted Class
Activation Mapping) approach to elucidate the decision-
making process of the ResNetl8 classification model.
Grad-CAM superimposes a heatmap over the original
brain MRI, emphasizing the regions most likely to
influence the model’s predictions.

A pre-trained ResNet18 model was used, which was
modified to perform inference on brain MRI images. The
model was set to evaluation mode, and Grad-CAM
visualizations were generated for each input image.
Specifically, gradients were extracted from the last
convolutional layer (i.e., ‘layer4.1.conv2’) relative to the
predicted class. These gradients were pooled and
weighted against the corresponding feature maps to
produce a class-discriminative localization map.

The resulting heatmaps were resized and
superimposed on the original MRI scans, revealing
regions of attention. As shown in Figure 10, the model
focuses primarily on hyperintense regions commonly
associated with gliomas, meningiomas, or pituitary
tumors. In correctly classified cases, the attention maps
align with tumor regions marked by radiologists,
validating both the performance and interpretability of
the deep model.

V. FINDINGS

The comparative examination of three state-of-the-art
deep learning models, ResNet50, InceptionV3, and
VGG-16, revealed crucial insights about their potential
for brain tumor classification using Magnetic Resonance
Imaging (MRI) information. Each model was rated based
on numerous performance measures that include
accuracy, training loss, Flscore, Area Under the Curve
(AUC), confusion matrix analysis, precision-recall trade-
off, and convergence speed.

A. OVERALL MODEL PERFORMANCE

Among all the models evaluated, ResNet50
consistently emerged as the superior architecture.
By the 10th epoch, it achieved a peak classification
accuracy of 98%, surpassing InceptionV3 at 96% and
VGG16 at 95%. The residual learning architecture of
ResNet50 accounts for its remarkable accuracy by
facilitating deeper feature learning while mitigating the
risk of vanishing gradients. Among the four tumor types,
glioma, meningioma, pituitary tumor, and absence of
tumor, its ability to extract complex and distinctive
features was essential for their differentiation.
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B. TRAINING EFFICIENCY AND CONVERGENCE
BEHAVIOR

ResNet50 exhibited the most rapid convergence during
training, therefore reducing the binary cross-entropy
loss from 0.6 to 0.10 compared to 0.12 for InceptionV3
and from 0.15 relative to VGG16. ResNet50 is suitable
for time-sensitive clinical environments where rapid
model training and retraining are essential, since its fast
convergence demonstrates excellent learning dynamics.
The model exhibited few signs of overfitting and
remained stable across epochs.

C. PRECISION, RECALL, AND F1 SCORE

ResNet50 achieved the highest F1 score of 0.92 for
classification quality, indicating an effective equilibrium
between recall and accuracy. InceptionV3 and VGG16
achieved F1 scores of 0.90 and 0.88, respectively. Our
results validate ResNet50’s robustness in addressing
class imbalance and atypical tumor classes, which is
particularly relevant in real-world datasets where these
issues are prevalent.

D. DISCRIMINATORY CAPABILITY AND ROC-AUC
ANALYSIS

The AUC value of 0.96 for ResNet50 clearly
demonstrates its discriminative capability. This statistic
illustrates the model’s efficacy in distinguishing classes
at certain threshold levels. The reliability of ResNet50 in
clinical decision-making contexts, particularly when false
positives or false negatives might have serious
repercussions, was substantiated by its ROC curve,
which consistently remained above the diagonal
baseline.

E. CONFUSION MATRIX INTERPRETATION

The confusion matrix of ResNet50 demonstrated
commendable sensitivity (true positive rate) and
specificity (true negative rate), indicating minimal
misclassifications across all four classes. This
exceptional diagnostic capability indicates the model’s
suitability for incorporation into a Computer-Aided
Diagnosis (CAD) system, therefore assisting radiologists
in accurately identifying brain tumors with little error.

F. PRECISION-RECALL TRADE-OFF

ResNet50 exhibited a robust trade-off curve in the
precision-recall analysis, indicating its ability to preserve
accuracy while maintaining recall. In medical imaging,
strong recall ensures the identification of almost all
tumor cases, while high accuracy minimizes
unnecessary false alarms that might lead to unwarranted
therapeutic interventions, making this aspect very
important.

G. MODEL EFFICIENCY AND PRACTICAL

APPLICABILITY

Despite all three models using pre-trained CNNs and
transfer learning, ResNet50 yielded a compelling
combination of efficiency and performance. Despite
being a more complex network, fine-tuning techniques
contributed to a reduction in computing expenses. Its
minimal error rates and high accuracy, coupled with
rapid training durations, make it an excellent option for
deployment in real-time, resource-constrained clinical
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settings.

Table Il presents the comparative outcomes across all
primary performance metrics.

The findings of this study indicate that ResNet50 is
the most compelling design for multi-class brain tumor
classification based on MRI. Its effectiveness across all
metrics designates it as a reliable and efficacious
approach for clinical implementation. Its potential as a
foundational model in forthcoming Al-assisted
diagnostic systems is underscored by its resistance to
overfitting, equitable classification across categories,
and suitability for resource-constrained settings.

TABLE 2: Performance Comparison of Deep Learning Models for
Brain Tumor Detection

Metric ResNet50 | InceptionV3 |[VGG16
Final 98 96 95
Accuracy (%)

Final Loss 0.10 0.12 0.15
F1 Score 0.92 0.90 0.88
AUC Score 0.96 0.94 0.93
Precision- High Moderate-High [Modera
Recall te
Convergence Fastest Moderate |Slower
Speed

Confusion Excellent Good Good
Matrix Result | (few errors)

VI. CONCLUSION
This study conducted a comparative examination of
three deep learning models, ResNet50, VGG16, and
InceptionV3, with transfer learning utilizing MRI data for
brain tumor detection and classification, also used Grad-
CAM the explainable artificial intelligence (XAl) strategy,
to boost model transparency and interpretability.
ResNet50 has much superior accuracy, F1-score, AUC,
and convergence rate compared to the alternatives.
This may be attributed to its residual connections, which
provide more efficient gradient propagation and deeper
representation learning, both crucial in medical image
processing, where minor differences are significant.
Future research will aim to enhance the model’s
generalizability across multi-center datasets with varying
image collection protocols. Additionally, enhancing
interpretability for physicians might include the use of
explainable artificial intelligence (XAl) systems such as
Integrated Gradiant (IG), DeepLIFT, and Score-CAM.
Moreover, the model may be further extended for multi-
class classification, including several tumor grades or
the segmentation of tumor regions and the size of the
tumor. An alternative approach to facilitate system
deployment in remote and resource-constrained
environments is the integration with mobile platforms
and real-time cloud-based inference engines.
DATA AVAILABILITY
The datasets included in this study is combination of
SARTAJ, Figshare, Br35h, and publicly accessible and
widely employed in brain tumor detection ! studies. The
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dataset is open-source and is used in compliance with
its respective data usage policies.

Lhttps:/mww.kaggle.com/datasets/masoudnickparvar/b
rain-tumor-mri-dataset
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ABSTRACT

We present a region-aware, end-to-end motorcycle violation detection pipeline tailored to traffic conditions in
Punjab, Pakistan, which integrates three YOLOv11-based components into a unified framework: motorcycle
violation detection (MCVD) for helmet compliance and multi-rider analysis, license plate detection (LPD), and
license plate character detection (LPCD). The system integrates lightweight object detection, BoT-SORT-based
tracking, and character-level recognition, supported by a synthetic-toreal adaptation strategy that combines
large-scale synthetic data with limited real samples. Two specific datasets are published, a 40,000-sample
synthetic Punjab license plate dataset (PS-LPCD) and a 650-sample real-world dataset (PR-LPCD), which are
publicly released in order to encourage research development and adaptation to the region. Class consolidation
enhanced MCVD performance (weighted average F1 score: 0.77) and the LPD model performed at mAPsy =
0.99. Two-stage fine-tuning on synthetic and real samples allowed LPCD to reach a character accuracy of =
98% and a full-plate recognition rate of = 90.7%, both surpassing EasyOCR and PaddleOCR, while also
achieving lower per-plate latency. With a single motorcycle per frame, the sequential pipeline maintains a
throughput of =~ 9.5 FPS; the throughput reduces in scenes where there are many motorcycles. These findings
indicate that synthetic pretraining, together with a small real fine-tuning, can be used to obtain a powerful, scalable,
and region aware automatic license plate recognition (ALPR) system, which provides a reproducible method for
detecting traffic violations across a variety of license-plate formats.

INDEX TERMS ALPR, Helmet compliance, License plate recognition, Motorcycle violation detection,

Multi-rider counting, Punjab, Synthetic dataset, YOLOv11

I. INTRODUCTION

Motorcycle-related traffic violations are a major
contributor to road injuries and fatalities worldwide. The
World Health Organization (WHO) reports that
motorcyclists account for 21% of all road traffic deaths
[1]. In Pakistan, motorcycles are a dominant mode of
transport and are disproportionately represented in
crash statistics [2], [3], underscoring the need for
effective, region-aware monitoring and enforcement
systems.

Although the previous literature has already generated
precise approaches to individual tasks such as helmet
detection [4], multi-rider counting [4], and automatic
license plate recognition (ALPR) [5], most systems
address these sub-tasks in isolation. Moreover, reliance
on generic datasets and off-the-shelf OCR engines (e.g.,
EasyOCR, Tesseract) limits robustness in regions where
license plate formats and scripts vary. This constrains
both applicability and reproducibility in real-world
deployments.

To fill these gaps, we propose an end-to-end
motorcycle violation detection pipeline based on
YOLOv1l. We emphasize that this work does not
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introduce new detection architectures or learning
algorithms. Instead, the novelty lies in a systems-level
integration of existing state-of-the-art components,
combined with region-specific dataset design, synthetic-
to-real adaptation, and deployment-oriented evaluation.
The system integrates three modules: MCVD
(Motorcycle Violation Detection) for helmet-use and
multi-rider detection, LPD (License Plate Detection) for
plate localization, and LPCD (License Plate Character
Detection) for character recognition. Together, these
components form a practical, reproducible, and region-
aware motorcycle violation detection pipeline.
OUR MAIN CONTRIBUTIONS ARE AS FOLLOWS:

- A unified, end-to-end YOLOvll-based pipeline

integrating helmet detection, rider counting, and

ALPR through system-level design.

- Two new Punjab-specific license plate character

detection datasets (synthetic and real) released to

support  region-aware  ALPR research and

reproducibility.

- A lightweight character-level detection approach

that improves ALPR robustness compared to off-the-

shelf OCR engines.

- Models trained and evaluated on augmented public
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datasets to ensure both reproducibility and regional
applicability.

Il. RELATED WORK

Initially, the detection of helmet-use was based on
handcrafted features and classical classifiers. As an
example, SVMs were used on the histograms of head
regions with background subtraction and projection
profiling [6], moving blob extraction with K-Nearest
Neighbor classification [7], and combined LBP, HOG,
and Hough descriptors, achieving an accuracy of
94.23% [8]. These methods were generally sensitive to
lighting, occlusion, and crowding.

Deep learning has enhanced its strength and enabled
joint tasks. CNN-based classifiers, for example,
achieved high accuracy (96.6%) and Fi-score (94.6%)
[9]. Various other pipelines, including YOLO-based and
alternative approaches, have also been applied for
helmet detection and multi-rider identification [4], [10]-
[15]. Nevertheless, although the above-mentioned
methods work well in their intended applications, they
are typically not integrated with the ALPR systems,
which restricts their use in end-to-end motorcycle
violation detection pipelines.

In the case of Pakistan, the research on the topic has
focused on individual tasks and not on comprehensive
end-to-end motorcycle violation detection. Deep learning
models have been successful in identifying the location of
the helmet on a surveillance video with high accuracy
[16], [17], while ALPR systems have focused on license
plate localization, character segmentation, and OCR
[18], [19]. Motorcycle-based end-to-end pipelines
involving the detection of helmet violations, multi-rider,
and region-specific license plate recognition are still
uncommon. This gap is addressed in our work, where a
unified framework is proposed, which is specific to
Punjab, Pakistan.

Several works outside Pakistan have integrated helmet
detection with ALPR in end-to-end pipelines. In some
cases, evaluation relied on proprietary datasets or
generic OCR systems, and regional plate variations were
not always addressed [20]-[24].

Synthetic data has emerged as a viable solution to the
scarcity and privacy issues of license plate datasets.
Template-based methods [25], rendering pipelines [26],
and diffusion models [27] have shown measurable gains
in recognition accuracy. Based on such methods, we
generate a template-based synthetic dataset of
character-level annotated license plates specifically for
the Punjab, Pakistan region, complemented with
manually labeled real images for evaluation. These
findings, along with benchmarking studies [28],
demonstrate the viability of synthetic plate generation as
a reliable supplement to real data.

Ill. METHODOLOGY

A. SYSTEM OVERVIEW
The suggested end
Detection system will

to end Motorcycle Violation
be used to monitor helmet
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compliance, multi riders, and license plate recognition.
The pipeline will be composed of motorcycle detection,
tracking, license plate detection, character recognition,
and violation classification as illustrated in Figure 1.

The detection of motorcycles was conducted with the
help of the YOLOv11l model that was trained on the
COCO dataset [29]. To optimize efficiency, the system
first employs lightweight detection and BoT-SORT
tracking [30] to identify candidate violation frames where
motorcycles and license plates are both visible and
potentially readable. Only these frames are then
processed with the heavier MCVD YOLOv11im model,
ensuring a balance between accuracy and
computational cost. This design prevents violations from
being logged on unreadable plates, which is essential
for reliable automated enforcement.

B. DATASETS AND PREPROCESSING

1) Motorcycle Violation Dataset (HELMET)

The HELMET dataset [4] is a widely used benchmark
for helmet-use and multi-rider detection and was
adopted for training the MCVD model. It comprises
91,000 annotated frames with 283,377 labeled object
instances spanning 36 fine-grained classes. As is typical
of real-world traffic data, this detailed class structure
introduces a substantial class imbalance, with several
safety-critical violations occurring far less frequently
than compliant riding behaviors.

To address this imbalance, two complementary
strategies were employed. First, class consolidation was
performed to simplify the label space and better reflect
traffic enforcement practices. The front-child passenger
(PO) class was removed, and all cases involving three or
more  riders were grouped into a single
MoreThanTwoRider category, since any rider count
exceeding two constitutes a violation regardless of
helmet usage. Second, a targeted sampling approach
was applied during training, where horizontal flipping
augmentation was restricted to underrepresented

classes (those with fewer than 20,000 samples). This
selectively increases the representation of minority
classes without distorting the natural distribution of
dominant categories.

steptl
- motorcycle detection
and tracking

stepl2 ",
LPDandLPCD

step 03
expand and MCVD
(only if LP readablé),

GTB-4162
extreated frame from a video violation detected
FIGURE 1. Pipeline of the proposed End-to-End Motorcycle Violation Detection
system, including motorcycle detection, tracking, license plate recognition, and

violation classification.

Following consolidation and augmentation, the dataset
contained 318,131 annotated instances across seven
violation-relevant classes. The class distributions before
and after consolidation are provided in Appendix A.
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The dataset was divided into 70% for training, 10% for
validation, and 20% for testing. Since the original
dataset consists primarily of CCTV footage in which
motorcycles often appear at a distance, near-camera
close-up views of riders and helmets are
underrepresented. To address this limitation and improve
robustness to real-world scale variations, we applied a
two-step augmentation strategy:

1) Close-up cropping: Every 10th frame containing
a motorcycle was cropped with a padding of 0.1 (as a
fraction of the bounding-box size) to synthetically
generate near-camera views while preserving
annotation coordinates.

2) Super-resolution enhancement: The resulting
low-resolution close-up crops were enhanced using
RealESRGAN [31] to recover fine-grained details and
improve object detectability.

In addition, mosaic blending was applied to simulate
dense traffic conditions and improve robustness to
occlusion and scale variation.

2) License Plate Detection Dataset (UFPR-ALPR)

In the case of license plate detection, we resorted to the
UFPR-ALPR dataset that consists of 4,500 annotated
images that represent various types of vehicles [5].
Each annotation included a license-plate bounding box
and metadata (vehicle type, camera type, lighting
conditions). We focused on plates that are visible on
motorcycles and on vehicle types that are relevant for
LPD.

To improve regional relevance for Punjab, Pakistan,
we generated synthetic Punjab-style license plates and
replaced the original plates in the images while
preserving plate aspect ratios (single-line vs. double-
line), as shown in Figure 3. This augmentation doubled
the dataset to 9,000 images. Following the original
dataset recommendations, the split was 40% training
(3,600 images), 40% validation (3,600 images), and 20%
test (1,800 images) [5].

Training augmentations for the LPD model included
mosaic blending, shear, perspective deformation, and
limited horizontal flipping. This set of augmentations
simulates viewpoint variation and minor geometric
distortions while preserving plate legibility.
3) License Plate Character Dataset (PS-LPCD and
PR-LPCD)
To train a robust character-level detector, we created the
Punjab Synthetic License Plate Character Dataset (PS-
LPCD) and a complementary real-world dataset, the
Punjab Real License Plate Character Dataset (PR-
LPCD). PS-LPCD contains 40,000 synthetic images
generated across four Punjab plate templates, while PR-
LPCD comprises 650 annotated crops extracted from the
PK-Number-Plates-V3 collection [32]. After filtering for
Punjab templates, 500 samples were reserved for fine-
tuning and 150 for final testing. PSLPCD was split into
80% for training and 20% for validation. Sample
synthetic examples are shown in Figure 4.

Both datasets are freely available for research
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purposes as part of the Punjab Pakistan Synthetic and

Real License Plate Character Datasets (P-LPCD),

available at Zenodo

(https://doi.org/10.5281/zen0d0.17182320) [33].

PS-LPCD contains 40,000 synthetic images equally

divided among four Punjab plate templates (front/back x
old/new; 10,000 images per template). We annotated 37
classes: digits 0-9, uppercase letters A—Z, and a special
class “PUNJAB” used to detect decorative or regional
markers and to filter irrelevant glyphs. Synthetic images
were randomized with the following augmentations to
emulate real capture artifacts:

- Spatial transforms applied with probability 0.7:

translation +10 pixels, shear +15°, rotation +15°.

- Perspective warp (small magnitude) to simulate

viewpoint changes.

- Photometric and environmental noise: dirt, dust,

Gaussian noise, and blur.

- Motion blur applied with probability 0.5; kernel size
n chosen randomly from odd integers in [1, 29].
The discrete motion-blur kernel K is defined as

1

—, ifi=[n/2] (horizontal blur row),
n
o=01
Kig = —, ifj=[n/2] (vertical blur column), M
n
0, otherwise.

\,

FIGURE 2. Two-stage super-resolution augmentation process. The first stage
generates synthetic close-up views through cropping, and the second stage
applies Real-ESRGAN to enhance visual details for improved detection
performance.

Original Image Augmented Image

FIGURE 3. Synthetic replacement of license plates to adapt the dataset to
regional characteristics.

This kernel produces a uniform linear blur across the
central row (horizontal) or column (vertical), modeling
motion along the principal axes.
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FIGURE 4. Sample synthetic license plates from PS-LPCD.

C. MODEL ARCHITECTURE AND TRAINING

The suggested system utilizes the models based on the
YOLOv1l to perform three main tasks, namely,
Motorcycle Violation Detection (MCVD), License Plate
Detection (LPD), and License Plate Character Detection
(LPCD). Two model versions were used: YOLOv11n, a
small model with real time inference, and YOLOv1lm, a
large model that is designed to achieve the highest
accuracy possible at the cost of computational
performance [34].

All models were initialized with weights pretrained on
the COCO dataset [35], a large-scale benchmark
dataset. Pretraining provides transferable and
generalized feature representations that improve
performance across various vision tasks [36]. Task-
specific data preprocessing and augmentation
strategies were then applied to enhance robustness
under challenging traffic conditions, including occlusion,
motion blur, and varied viewpoints. For example, MCVD
training incorporated moderate mosaic blending to
improve detection in dense scenes, while LPCD training
disabled mosaic augmentation and horizontal flips to
preserve character orientation. The LPD training used a
mixed augmentation, which consisted of mosaic
blending, shear, perspective deformation, and restricted
flips to preserve the geometry of the license plates. In
addition to these custom settings, all models utilized the
default augmentation pipeline provided in the YOLOv11
documentation [29].

The training was done on a 64-bit system with an
NVIDIA RTX 2060 GPU (VRAM: 6GB) and an AMD
Ryzen 7 4800H CPU (with 8 cores and 16 threads),
along with 40 GB of RAM, and operated under the
Windows operating system. Hyperparameters were
tuned to balance accuracy and inference efficiency. In
particular, the MCVD model was trained using the SGD
optimizer with momentum, as the HELMET dataset is
large and SGD is known to offer better generalization on
large datasets. In contrast, the LPD and LPCD models
were trained using the Adam optimizer, since their
datasets are medium or small in size, where adaptive
methods such as Adam converge faster [37]. The overall
training configuration is summarized in Table 1.

TABLE 1. Training configurations for MCVD, LPD, and LPCD models

Model Epochs Batch Size Optimizer
MCVD (YOLOv11n) 20 16 SGD
MCVD (YOLOv11m) 15 8 SGD
LPD (YOLOv11n) 50 16 Adam
LPD (YOLOv11im) 20 8 Adam
LPCD (YOLOv11n) 20 16 Adam

All models were trained with an image size of 640 x 640.
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Complete training and validation curves, including
loss (box, cls, dfl), mAP, precision, and recall for all
YOLOv11l models, are provided in Appendix B for
reference and reproducibility.

In the case of LPCD, domain adaptation was
performed through a two-step fine-tuning process on the
Punjab Real License Plate Character Dataset (PR-
LPCD) following the initial training, as shown in Table 1.
In Stage One, the first eight layers were frozen, and the
model was trained for 10 epochs with a learning rate of
1 x 1075 and a batch size of 8. In Stage Two, only the
first four layers remained frozen, and training continued
for another 10 epochs with a reduced learning rate of 1
x 1076, This gradual unfreezing approach allowed the
model to fit well to real-world data and alleviate
overfitting while retaining the generalizable
characteristics acquired in synthetic training.

D. LICENSE PLATE CLASSIFICATION

The LPCD pipeline includes a license plate layout
classification step in order to allow the correct
sequencing of the detected characters, separating
single-line and double-line plates. This difference is
essential, as the position of the characters varies
dramatically across layouts.

The classification is based on a normalized vertical
variation measure that is calculated using the bounding
boxes of the identified characters. Let y; denote the
vertical center of the i character, and h; its bounding
box height. The metric is defined as:

1w~ _
o, N 21=1 (v — 9)?
Normalized Variation = —% =2Y-*_

o — )

v L= hi

where oy represents the standard deviation of the

vertical centers, un the mean character height, and N
the total number of detected characters.

Plates where the normalized variation was more than
0.45 were defined as double-line because the
characters were more vertically spread. Values below
this threshold indicated single-line plates. The threshold
was chosen empirically in steps of 0.05 by comparing
the accuracy of classification on the PR-LPCD data.

After classification, single-line plates were read
sequentially, whereas double-line plates were parsed
line by line. For double-line plates, a vertical midline,
computed as the average of all vertical points, separates
the two lines, which are read independently. Additional
heuristics were incorporated to improve robustness,
such as identifying the smaller-sized final two digits of
the registration year that commonly appear on Punjab
single-line plates.

Figure 5 illustrates the process, showing bounding box
distributions for singleand double-line plates. A vertical
yellow midline separates the two lines in double-line
plates, while red dots mark each character’s center, and
dotted red lines indicate the spread from the midline.
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FIGURE 5. Normalized Vertical Variations for Single-Line and Double-Line
License Plates. Red dots indicate character centers, dotted red lines show the
vertical spread, and the yellow midline separates the two lines in double-line
plates.

IV. RESULTS AND DISCUSSION

A. EVALUATION METRICS

The performance of the proposed MCVD system was
evaluated using metrics that reflect both detection
accuracy and computational efficiency. For object
detection, the primary metric is mean Average Precision
at an loU threshold of 0.5 (MAP@0.5), which quantifies
the model’s ability to correctly localize and classify
objects. Formally, for C classes and AP. representing
the average precision for class c:

(8}
1
AP@0.5 = — S AP, 3
mAP@ G; 3)

To provide a stricter assessment of detection
robustness, mAP averaged over loU thresholds from 0.5
to 0.95 in 0.05 increments (MAP@][0.5:0.95]) is
computed as:

1 0.95
mAP@[0.5:0.95] = - t:z();.j mAP@¢ (4)

Given the residual imbalance across violation
categories, the weighted F1-score was used as the
primary evaluation metric for MCVD to ensure fair
performance assessment across both frequent and rare
classes. This is defined as:

c

Flweighted = ch Fly, w.= o
e=1 Z‘l:l i

where n. denotes the number of true samples in class c
and F 1. is the F1-score for that class.

In addition, standard evaluation metrics such as
accuracy, precision, recall, and F1-score are computed
to provide additional insights into the system’s
performance. These are defined as:

TP

Te

(5)

Precision = ————— 6
recision TP+ FP (6)
TP
Recall = TPTFN (7

2 Precision - Recall

= Precision + Recall ®

where TP , FP , FN , and TN represent true
positives, false positives, false negatives, and true

negatives, respectively.

To assess computational efficiency, inference speed
was measured in frames per second (FPS). Higher FPS
values indicate faster processing, which is crucial for
real-time traffic monitoring applications.

B. MOTORCYCLE VIOLATION DETECTION (MCVD)
MODELS

Three YOLO-based MCVD models were trained to
investigate the effects of model size and architecture and
to identify the best-performing model. Their performance
was also compared with the CNN-MTL baseline (CNN-
based Multi-Task Learning for helmet detection)
proposed by Lin et al. [4], as shown in Table 2.

Consolidating the original 36 classes into 7 core
violation classes significantly improved detection
performance. YOLOvlln trained on 7 classes
achieved an mAP@50 of 0.6584, nearly doubling
YOLOv8n's 0.3514 ftrained on all 36 classes. This
reduction in classes helped reduce label noise and class
imbalance, thereby boosting accuracy and model focus.
Notably, even with the same 36 classes, YOLOv8n
outperformed the CNN-MTL baseline (F1 score 0.70 vs.
0.673), likely due to the more efficient and advanced
YOLO architecture. YOLOvllm further improved
performance, reaching an mAP@50 of 0.7127 and a
weighted F1 score of 0.77, demonstrating the combined
benefits of class consolidation and targeted minority-
class augmentation in mitigating class imbalance and
improving detection robustness.

For further analysis, the consolidated classes were

grouped into Non-Violation (DHelmet,
DHelmetP1Helmet) and  Violation (DNoHelmet,
DNoHelmetP1NoHelmet, DHelmetP1NoHelmet,

DNoHelmetP1-Helmet, MoreThanTwoRider) categories,
yielding the weighted average results shown in Table 3.

These results further illustrate the effectiveness of the
proposed imbalance mitigation strategies, as minority
violation classes benefit from improved recall without
sacrificing  precision on dominant non-violation
categories.

The models show higher precision, recall, and F1-
scores for compliant rider classes, effectively reducing
false positives and improving the classification of non-
violators. Inference speed tests on 1,000 random test
images indicate that YOLOv1lm achieves near real-
time performance at approximately 25 frames per
second (FPS), comparable to YOLOv11n’s ~27 FPS,
maintaining efficiency despite increased complexity.

Despite the strong overall performance, several failure

TABLE 2. Performance comparison of MCVD models, including YOLO variants and CNN-MTL baseline

MCVD Model Precision Recall mMAP@50 mMAP@[50-95] Classes Weighted Average F1 Score
CNN-MTL [4] - - - - 36 0.673
YOLOV8n 0.3803 0.3889 0.3514 0.3104 36 0.70
YOLOv1lln 0.6505 0.6157 0.6584 0.5915 7 0.72
YOLOv1im 0.7096 0.6664 0.7127 0.6517 7 0.77
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cases were observed in challenging real-world
scenarios. In highly crowded scenes, riders positioned
very close to each other can be confused, leading to
false predictions due to inter-instance occlusion. When
occlusion occurs with nonmotorcycle objects, the model
generally remains robust and is able to correctly
distinguish riders. However, for distant motorcycles,
headwear such as caps or hats is occasionally
misclassified as helmets due to limited spatial resolution
and visual similarity. Representative failure cases are
illustrated in Figure 6.

S E —
OHelmetPiNoHelmet 0.50 Ml I y A = —MoreThanTwoRider 0.56

B g “fﬁj

A B Cc
FIGURE 6. Sample failure cases of the MCVD model. Annotations A and C
illustrate misclassifications in highly crowded scenes involving closely spaced
motorcycles, while B shows confusion between a cap and a helmet for distant
rider instances.

In summary, label consolidation, enhanced training
methods, and tailored augmentations enable YOLOv11-
based MCVD models to deliver superior accuracy,
precision, and practical deployment readiness,
outperforming earlier state-of-the-art approaches.

C. LICENSE PLATE DETECTION (LPD) MODELS

The proposed LPD YOLOv11 models were evaluated on
the UFPR-ALPR dataset [5], with results summarized in
Table 4.

The lightweight YOLOv1ln, trained for 50
epochs, slightly outperformed YOLOv11lm, which was
trained for 20 epochs, likely due to the longer training
duration. Both models achieved high precision, recall,
F1 score, and mAP, demonstrating accurate and well-
localized license plate detection. While Laroca et al. [5]
achieved a marginally higher recall (98.33% vs.
97.89%), our models provide complete metric
coverage and near-perfect localization (MAP@0.5 =
0.9910). The mAP averaged over loU thresholds 0.5
to 0.95 (MAP@[0.5-0.95]) reached 0.8485 for
YOLOv11ln and 0.8295 for YOLOv1lm, highlighting
robust detection across varying localization criteria and

benefiting subsequent LPCD tasks.

These results were obtained on an augmented
UFPRALPR dataset, including synthetic regional plates
(see Section 11I-B2), which enhanced dataset diversity
and emphasized the robustness of our models.

TABLE 3. Weighted average performance for consolidated violation categories

Category Precision Recall F1 Support
Non-violating 0.73 0.86 0.79 42,267
Violating 0.59 0.66 0.63 28,174

TABLE 4. Performance of License Plate Detection (LPD) models on UFPR-
ALPR dataset

LPD Model Precision Recall F1 Score| mAP@0.5
Laroca et al. [5] - 0.9833 - -
YOLOv1ln 0.9729 0.9789 0.9759 0.9910
YOLOv1im 0.9601 0.9719 0.9660 0.9846

D. LICENSE PLATE CHARACTER DETECTION (LPCD)
MODELS

The performance of the LPCD model was evaluated on
both synthetic and real datasets under different training
regimes, including training solely on synthetic data,
training solely on real data, and the proposed two-stage
fine-tuning approach. Table 5 summarizes the
quantitative results.

Training exclusively on synthetic data (Experiment 1)
yielded excellent performance on synthetic validation
images (MAP@0.5 = 0.9948), demonstrating the
effectiveness of large-scale synthetic samples for
learning character features. However, evaluation on
real data (Experiment 2) revealed a notable
performance drop, with precision decreasing by 7.90%
and recall by 14.15%, highlighting the limitations of
domain shift.

Using only real samples for training (Experiment 3)
improved precision on real test data (+2.98% compared
to Experiment 2) but slightly decreased recall (-3.35%),
indicating that limited real data captures fewer
variations. The two-stage approach (Experiment 4),
where a synthetically trained model was fine-tuned on
just 500 real samples, achieved the best results.
Precision increased by 4.19% and recall by 9.22% over
Experiment 2, while mAP@0.5 improved by 4.46% and
MmAP@[0.5-0.95] by 14.20% (0.8813 vs. 0.7717),
confirming that synthetic pretraining provides
transferable features, and modest real fine-tuning
effectively bridges the domain gap.

The normalized vertical variation method reliably
distinguished single-line and double-line plates,
supporting accurate character sequencing. Overall, the
LPCD pipeline achieved 98.46% reading accuracy on

TABLE 5. LPCD Model Performance Metrics under different training experiments

Experiment Training Data Validation / Test Data Precision Recall mAP@0.5 mAP@[0.5-0.95]

1 Synthetic Only (PS-LPCD 32k) Synthetic Validation (8k) 0.9948 0.9921 0.9948 0.9546

2 Synthetic Only (PS-LPCD 32k) Real Test (PR-LPCD 150) 0.9162 0.8517 0.9375 0.7717

3 Real Only (PR-LPCD 500) Real Test (PR-LPCD 150) 0.9435 0.8232 0.8803 0.7515

4 Synthetic + Fine-tune on Real Real Test (PR-LPCD 150) 0.9546 0.9302 0.9793 0.8813
(PSLPCD 32k + PR-LPCD 500)
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the 650-image PRLPCD dataset. Failures occurred
mainly under extreme rotations or shearing (Figure 7),
where, for example, plate C missed the last character “7”
as it fell below the midline, whereas plates A and B with

milder distortions were read correctly as LEC-967-17.
A) B) o]

- —

FIGURE 7. Examples of license plates demonstrating correct reading and failure
cases.

Further analysis of the PR-LPCD real test set (150
plates) revealed that approximately 78% of recognition
errors originated from the small-character regions
inherent to Punjab license plate designs. These regions
are particularly sensitive to adverse imaging conditions.

Typical failure cases include environmental
degradation (LP_0019), where dust caused confusions
such as ‘5—‘S’ and ‘0'—‘U’; geometric distortion
(LP_0332 and LP_0341) due to extreme viewing angles
combined with low-resolution

small characters; physical wear (LP_0345), where
faded printing reduced character contrast; and low-light
conditions (LP_0401 and LP_0589), leading to
misclassification among visually similar digits. These
representative failures are illustrated in Figure 8.

The predominance of small-character-related errors
suggests that robustness could be further improved
through targeted synthetic augmentations (dust, blur,
perspective warping) and enhanced multi-scale feature
extraction.

Comparative evaluation on the 150-image PR-LPCD
real test set further demonstrates the effectiveness of
the proposed approach compared with EasyOCR [38]
and PaddleOCR [39], the latter being based on a PP-
OCR framework with a CRNN-style text recognition
architecture, as shown in Table 6.

The proposed LPCD model consistently outperforms
both general-purpose OCR baselines across all
evaluation metrics. Compared to EasyOCR, character-
level accuracy improves by 12.60% (from 87.67% to
98.72%), while fullplate match accuracy increases
substantially from 33.33% to 90.67%. When compared
with  PaddleOCR, which demonstrates stronger
character recognition performance (95.84%), the
proposed method still achieves higher character-level
accuracy and nearly doubles the full-plate match
accuracy (49.33% to 90.67%).
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Plate 69: Ip_0332 — INCORRECT

Plate 5: Ip_0019 — INCORRECT
%
’ N

FIGURE 8. Representative failure cases from the PR-LPCD test set,
highlighting typical character recognition errors. Yellow arrows indicate
incorrectly predicted characters.

TABLE 6. LPCD vs. OCR Baselines Performance Comparison

Method Character-level Accuracy | Full-Plate Match Accuracy
EasyOCR 0.8767 0.3333
PaddleOCR 0.9584 0.4933
LPCD Model 0.9872 0.9067

In addition to accuracy gains, the LPCD model
demonstrates superior computational efficiency relative
to EasyOCR. Total inference time on the test set is
reduced by approximately 2.63x (from 53.04 s to 20.13
s), with average per-plate latency decreasing from
0.0816 s to 0.0310 s. These results demonstrate that
task-specific pretraining on synthetic license plate data,
combined with the proposed double-line classification
heuristic, yields substantial improvements in recognition
accuracy while maintaining real-time applicability in
practical deployment scenarios.

E. END-TO-END PIPELINE INFERENCE

Two pipeline configurations integrating MCVD, LPD,
and LPCD were evaluated on an NVIDIA RTX 2060
GPU:

- NNN: Nano variants for all models
- MMN: Medium variants for MCVD and LPD, Nano for
LPCD

Each configuration was executed 5,000 times across 20
testimages to estimate baseline inference speed without
additional preprocessing. The NNN configuration
achieved ~19 FPS, demonstrating real-time capability,
while the MMN configuration achieved ~15 FPS,
reflecting a trade-off between speed and accuracy.

To evaluate real-world performance, we applied the
proposed sequential pipeline (see Section IlI-A) to
five traffic surveillance videos from Lahore, Pakistan.
These videos are available in our GitHub repository
(https://github.com/mhdatheek136/P-LPCD). The results
are summarized in Table 7.
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TABLE 7. End-to-end pipeline inference results on traffic surveillance
videos

Video Pipeline FPS Motorcycles Detected Crowdedness
hdl 8.69 1596 1.93
hd2 8.11 3147 1.78
hd3 6.97 4181 2.78
hd4 9.17 1633 122
hd5 6.89 4725 2.67

The results show a strong dependency between
crowdedness (average motorcycles per frame) and
inference speed. With approximately one motorcycle per
frame (e.g., Video hd4, crowdedness = 1.22), the
pipeline maintained ~9 FPS. When crowdedness
exceeded two motorcycles per frame (e.g., Videos hd3
and hdb), throughput dropped to ~7 FPS, revealing a
near-linear decline in performance as object density
increased.

Extrapolation suggests that under conditions of exactly
one motorcycle per frame, the pipeline would sustain
approximately 9.5 FPS. In contrast, at ~3 motorcycles
per frame, throughput decreases by nearly 25-30%.
This performance— density trade-off highlights the
importance of optimizing inference strategies for
deployment in dense urban environments.

V. CONCLUSION AND FUTURE WORK

The paper introduces a full YOLOvll-based
motorcycle traffic violation detection pipeline, in
particular, dealing with multi-rider detection, helmet-
usage detection, and automatic license plate recognition
(ALPR). The system is designed to suit Punjab,
Pakistan, where motorcycles are a major cause of road
deaths, and the levels of helmet usage among
motorcycles are very low.

Key contributions of this study include the
consolidation of classes for the MCVD model, achieving
MAP@50 scores of 0.66 with YOLOv11n and 0.71 with
YOLOv11im, as well as strong license plate detection
performance with mAP@50 values approaching 0.99.
The proposed PS-LPCD synthetic dataset, fine-tuned
with the PR-LPCD real-world dataset, achieved 0.98
accuracy on real test sets. Both datasets (PSLPCD and
PR-LPCD) are publicly available to support future
research and to provide a reproducible procedure for
creating region-specific license plate datasets, which is
particularly useful in scenarios where real-world data is
limited. Moreover, the normalized vertical variation
technique that was proposed to differentiate between
single-line and double-line plates is a lightweight
alternative to the traditional deep learning methods. To
provide a powerful video-based analysis, the BoT-SORT
tracker was added, and the presented sequential
pipeline could maintain around 9.5 FPS when it was
applied to the scenes with one motorcycle per frame.

Several challenges were mitigated using task-specific
augmentations, particularly the lack of near-camera
close-up views in CCTV footage, which results in small
and partially occluded license plates, along with varied
camera perspectives and limited training data for multi-
passenger cases. However, some limitations remain,
such as lower efficiency when processing full-resolution
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images, potential identity mismatches in congested
traffic, reliance on continuously updated synthetic
datasets to accommodate evolving license plate
formats, and difficulty in detecting small character
regions on Punjab license plates under extreme
conditions.

The following directions are suggested for future
research:

(i) the use of regions of interest (ROIs) and rider-
passenger relations modeling to enhance efficiency; (ii)
the separation of nearby riders by the use of
segmentation or pose estimation; (iii) the use of
lightweight language models to refine the predictions of
character sequences in the license plates;(iv) Controlled
ablation studies to assess the impact of synthetic close-
up augmentation on MCVD performance and the
influence of synthetic data volume on LPCD accuracy;
(v) parallelization of the ALPR process to enhance
inference speed in a real-world application; and (vi)
Developing specialized detection strategies for small
character regions, particularly on Punjab license plates,
to improve robustness under challenging conditions.
These enhancements are meant to improve the strength,
accuracy, and scalability of the proposed system to be
used in large-scale traffic monitoring and enforcement
applications.
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APPENDIX A CLASS DISTRIBUTION BEFORE AND AFTER
CONSOLIDATION OF THE HELMET DATASET

This appendix shows the HELMET dataset’'s class
distribution before and after consolidation. Initially
comprising 36 fine-grained classes (Figure 9), the
dataset was merged and augmented into 7 broader
categories (Figure 10) to reduce class imbalance.
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FIGURE 10. Class distribution of the HELMET dataset after consolidation and

augmentation (7 classes).

APPENDIX B TRAINING AND VALIDATION CURVES

This appendix provides the full training dynamics for all
YOLOv11l models used in MCVD, LPD, and LPCD
experiments. Each figure shows training and validation
loss curves (box, cls, dfl) along with validation mAP,

precision, and recall over epochs.
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Abstract

Dense breast tissue is a major challenge to screening of breast cancer since it covers about 40-50% of the breast
and hides the lesions in traditional mammography. This weakness requires the efficient use of additional imaging
modalities for high-risk patients. The following paper is a comparative analysis of the major supplemental imaging
techniques, such as ultrasound, Magnetic Resonance Imaging (MRI), Contrast-Enhanced Spectral Mammography
(CESM), Digital Breast Tomosynthesis (DBT), and Al-assisted mammography. A literature review was conducted
in databases like PubMed, ScienceDirect, and Google Scholar, and peer-reviewed articles published since 2016,
and those that concentrated on breast cancer screening in high-density breasts were assessed. The review is a
confirmation of the role that mammography plays at its core, but indicates the improved detection of cancer with
the help of supplemental ultrasound and MRI. Importantly, CESM has a similar diagnostic potential as MRI and
the practical advantages of lower costs and shorter scan time. DBT enhances clear images by reducing overlap
between tissues, and it effectively reduces the rate of recollection among patients. Moreover, Al-assisted
mammaography is one of the essential developments that will raise the detection of cancer in dense breasts and may
even prevent the use of auxiliary procedures. The results strongly reflect the need of implementation of tailored
and risk-based screening methods where such advanced add-on imaging technologies are combined with Artificial
Intelligence, which is likely to elevate screening accuracy, clinical outcomes, affordability, and ultimately make a
significant contribution to lowering the rates of mortality of breast cancer.

INDEX TERMS: Breast Density, Breast Cancer Screening, Supplemental Screening Strategies, Breast
Cancer Risk, Ultrasound, MRI, CESM, DBT, Al, Risk-Stratified Screening, Diagnostic Performance,

Cost-Effectiveness, MRI (AB-MRI)

. INTRODUCTION

Well-planned screening helps to increase the survival
rates of breast cancer. It remains the most widespread
type of cancer in women worldwide, and early diagnosis
has a considerable impact on the results. One of the
determinants that influences the risk of cancer and the
accuracy of the screening process is the breast density,
or the percentage of fat to fibroglandular tissue that is
seen on the mammogram. It is also advised that if women
go through mammographic screening annually, the
chances of death by breast cancer are minimized by 20
percent [1]. As suggested by previous studies, around 40-
50% of women over the age of 40 have dense or
heterogeneous breasts, which are further classified as C
and D in the Breast Imaging Reporting and Data System
(BI-RADS) [2].

The masking effect of highly dense breast tissue can
significantly reduce the sensitivity of conventional
mammography, hindering early cancer detection [3].
Supplemental modalities, such as contrast-enhanced
spectral mammography (CESM), have been investigated.
Meta-analyses indicate that CESM provides high
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specificity and sensitivity in identifying lesions hidden in
dense breasts [4]. Magnetic resonance imaging is also
one of the most sensitive imaging techniques; a recent
study evaluated MRI and found its sensitivity and
specificity to be higher than that of mammography [5].
The accuracy, specificity, and recall rate of
mammography with supplemental ultrasonography were
higher than those of mammography alone [6]. Digital
breast tomosynthesis (DBT) offers superior lesion
visualization than conventional mammography, as
suggested by certain previous studies. However, its
advantage for women with highly dense breasts is still
unclear [7]. To improve early detection and provide the
best individualized treatment, it is necessary to determine
the best screening method for women with dense breasts
[1].

According to previous studies, millions of women are
diagnosed with breast cancer each year. It is also noted
that breast cancer continues to be one of the leading
causes of female mortality, with hundreds of thousands
of them dying from the disease annually [8]. Various
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screening guidelines are employed in order to diagnose
breast cancer at an early stage. The protocols enhance
survival rates during breast cancer patients with dense
breast since they provide less invasive treatments [9].
Conventional mammography is still the most common
screening approach available because it is easily
accessible and can effectively reduce the rate of mortality
[10]. It is very insensitive in women who have dense
breasts and brings about a high risk of cancer by hiding
lesions and abnormalities [11]. Researchers are
investigating personalized screening by taking individual
risk factors and breast density into account for detecting
breast cancer early [12]. Other screening tools, including
ultrasound, CESM, MRI, and Al mammography, are
being explored because mammography doesn’t function
well for dense breasts [6, 13]. Physicians get help from
these techniques in customizing screening to each
woman’s unique requirements [1].

scattered areas of
fibroglandular density

almost entirely fatty heterogencously dense

extremely dense

Figure 1: BI-RADS breast density categories shown from low to high density [3].

The proportion of fibroglandular tissue to fatty tissue
seen on a mammogram is known as breast density [11].
Breast density is divided into four categories based on the
American College of Radiology’s Breast Imaging
Reporting and Data System (BI-RADS): A-—almost
entirely fatty, B—diffuse fibroglandular, C-
heterogeneously dense, and D—extremely dense [14].
Dense breasts (categories C or D) not only make tumors

Table 1. PICOS framework for inclusion and exclusion criteria

harder to detect on mammography but also increase the
breast cancer risk [3]. The phenomenon "masking effect”
makes abnormalities harder to detect because both
tumors and dense tissue appear white on mammograms.
It is common practice to use additional imaging
technigues to address the limitations of mammography.
Reconstructions of three-dimensional images used in
digital breast tomosynthesis can improve lesion visibility
and reduce recall rates [7]. In terms of diagnostic
accuracy comparable to that of MRI, Contrast-Enhanced
Spectral Mammography (CESM) allows vascular
assessment of lesions by combining low- and high-
energy imaging [4]. Ultrasound (US) is a safe imaging
method because it does not use radiation and can detect
tumors in women with dense breasts that mammography
might miss, despite being dependent on the operator’s
skill [15]. Magnetic resonance imaging (MRI), because of
its high cost and restricted availability, is still the most
sensitive method for detecting breast cancer, especially
in women who are at high risk [5]. Sensitivity indicates
how well the test detects women who actually have the
disease, while specificity refers to how well the test
detects women who do not have the disease. High
specificity minimizes false positives and unnecessary
follow-ups, while high sensitivity allows for early
identification, particularly in women with dense breasts.
Such definitions align with previous research assessing
breast density, cancer risk, and screening performance
[4].

Supplemental imaging techniques (MRI, CESM, DBT,
and ultrasound) have been independently evaluated for
breast screening in women with high breast density.
During the past few years, several large-scale trials and
systematic reviews have shown improvements in
detection rates over mammography alone [13]. Studies
indicate that in many dense-breast cases, contrast-
enhanced spectral mammography (CESM) can achieve
sensitivity similar to MRI; its specificity and cost vary
significantly among healthcare settings [16]. In breasts

Component

Inclusion Criteria

Exclusion Criteria

Population (P)

Women with heterogeneously or extremely dense
breast tissue and negative mammography results

Studies involving non-
dense breasts, male
patients, or non-human
studies

Intervention/Exposure (I)

Use of supplemental imaging techniques, such as
contrast-enhanced spectral mammography (CESM),
digital breast tomosynthesis (DBT), magnetic resonance
imaging (MRI), and ultrasound (US)

Studies limited to
standard 2D
mammography

Comparison (C)

Compared with standard 2D mammography or between
different supplemental techniques

Studies without a
reference standard

Outcomes (O)

Diagnostic performance matrices that are reported
include cost-effectiveness, sensitivity, specificity, recall
rate, PPV, and cancer detection rate (CDR)

Studies lacking
diagnostic outcomes

Study Design (S)

Prospective or large retrospective cohort studies, cross-
sectional studies, and meta-analyses of diagnostic
accuracy (2016-2025)

Single-case reports,
editorials, and small-
sample studies

Other Criteria

Peer-reviewed English publications between 2016 and
2025

Non-peer-reviewed

publications in other

languages or before
2016
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with different densities, digital breast tomosynthesis
(DBT) has been shown to reduce recall rates and
enhance lesion visibility; however, the further advantage
for highly dense tissue is still less certain [7]. Al-assisted
mammography can also be used to eliminate the need for
additional mammography, with sensitivity and specificity
comparable to those of supplemental ultrasound.
Furthermore, these advancements from standard
screening methods to personalized techniques mainly
focus on the early detection and prevention of breast
cancer [6]. Recent studies also show that using several
screening modalities without specific guidelines for when
and how often to apply those increases the number of
false positives and incorrect diagnoses [6]. Few studies
have comprehensively evaluated key supplemental
imaging modalities across different settings and dense-
breast populations to establish an optimal balance
between their benefits and risks [17]. The absence of
comprehensive long-term outcome data, including
interval cancer incidence, stage at diagnosis, and
mortality, limits understanding of its real-world impact [2].
Furthermore, many proposals may not be practical
worldwide because the limited resources of low- and
middle-income regions were not properly taken into
consideration [12]. To incorporate the most recent
studies, compare diagnostic performance, analyze risks,
and assess feasibility across settings for women with
dense breasts, a thorough synthesis is necessary. This
review assesses the diagnostic efficiency and cost-
effectiveness of supplemental screening modalities,
including digital breast tomosynthesis (DBT), ultrasound
(US), magnetic resonance imaging (MRI), contrast-
enhanced spectral mammography (CESM), and Al in
women with dense breasts and negative mammogram
reports from previous studies. It also looks for research
gaps to provide risk-based ideal screening methods.
Research Questions (RQs):

RQ1: What are the current challenges in breast

density assessment?

RQ2: How do supplemental imaging modalities

compare in detecting breast cancer in dense

breasts?

RQ3: In what ways do several imaging modalities

affect diagnostic performance?

Il. METHODOLOGY

The central focus of this review was on systematically
examining supplemental screening techniques for
women with an elevated risk of breast cancer who have
dense breast tissue. In accordance with PRISMA
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) principles, the review was conducted,
however, no quantitative synthesis was performed, and
the review was not registered prospectively in
PROSPERO. Further, a transparent and organized
methodology was applied to ensure integrity throughout
the review process.

A. Search Strategy

Information Sources: A comprehensive search was
conducted to identify recent papers and relevant studies
published between August 2016 and July 2025. PubMed,
PubMed Central (PMC), ScienceDirect, and Google
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Scholar from widely accessible digital libraries were used.
Specialized databases such as Embase and Cochrane
were not part of the search strategy due to a lack of
access and resource limitations. All search decisions and
limitations were explicity documented to maintain
transparency.

Search Query: To identify up-to-date research, a
comprehensive search was carried out by exploring
selected databases. Medical Subject Headings (MeSH)
and keyword terms such as “dense breasts”,
“supplemental imaging techniques”, “contrast-enhanced
spectral mammography”, “digital breast tomosynthesis”,
ultrasound”, “magnetic resonance imaging”, and artificial
intelligence” were used in the search strategy.

Boolean operators AND, OR, and NOT were used to
narrow down the search results. This combination aided
in the screening of human subject-focused research for
high-risk women with dense breasts. The search method
utilized the following aspects of a structured Boolean
expression: (“dense breast” OR “breast density”) AND
(“breast cancer screening” OR “screening
mammography”) AND (“ultrasound” OR “magnetic
resonance imaging” OR “MRI” OR “digital breast
tomosynthesis” OR  “contrast-enhanced  spectral
mammography” OR “CESM”) NOT (“animal” OR “case
report”).

Other Search Methods: To ensure comprehensiveness,
backward and forward snowballing were employed to
review the reference lists of the included publications and
related reviews. This review does not include grey
literature, such as abstract-only research, conference
proceedings, and other non-peer-reviewed data.

B. Eligibility (Inclusion/Exclusion) Criteria:

In accordance with the population, intervention,
comparison, outcomes, and study design (PICOS
framework), which is outlined in this table, articles were
screened using specified inclusion and exclusion criteria:
C. Study Selection Process:

The selection of the study complied with the transparency
and reproducibility requirements of the PRISMA
guidelines. EndNote software was used to import
references from PubMed, Google Scholar,
ScienceDirect, and PMC for reference management and
to prevent duplication. In the studies, screening was
conducted in two stages. In the first step, all titles and
abstracts were reviewed by two independent reviewers
using PICOS-based eligibility criteria. When any
differences could not be resolved through discussion, a
third reviewer was brought in to make the final decision.
A second round of review was conducted by the same
reviewers who independently examined the full texts of all
possibly qualifying articles. At the full-text stage, reasons
for exclusion were carefully noted. To maintain uniformity
and transparency, both stages were screened using the
same criteria. In the final synthesis, only studies that met
all inclusion criteria after reviewer agreement were
included.
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PRISMA flow diagrams were created to describe the
process of identifying, screening, determining eligibility,
and including participants. Using database searches and
supplementary sources, 100 records were discovered, of
which 90 were found through database searches and 10
by searching supplementary sources. There were only 30
records left for title and abstract screening after the
duplicates were removed. As a result of this stage, 70
records were excluded because they did not meet the
eligibility requirements. In total, 22 full-text publications
were reviewed. Among these publications, 8 were
removed due to insufficient methodological relevance or
the absence of the complete text. There were 22 papers
that met all criteria for inclusion in the final qualitative
synthesis. As shown in Figure 2, the PRISMA flow
diagram provides a visual representation of the numerical
breakdown of each stage in order to ensure
methodological transparency and reproducibility.

Table 2. Summary of included studies and their characteristics

Records identified through database searching: 90 Additional record from other sources: 10

Record screened(title/abstract): 30 Record excluded: 70

Articles excluded with not full text: 8

Full text article accessed for eligibility: 22

Figure 2: PRISMA flow diagram for study selection
The 22 included papers consist of 10 reviews or expert
guidelines published between 2016 and 2025, 9 cohort
studies published between 2016 and 2024, and 6
systematic reviews/meta-analyses published between

Study Design Number of Publication References
Studies Years
Systematic Reviews / Meta- 6 2021-2024 [2], [4], [7], [13], [16], [17]
analyses
Cohort Studies 7 2016-2024 [6], [11], [12], [14], [15], [19]-
[22]
Reviews / Expert Guidelines 10 2016—-2025 [1], [3], [5], [8], [9], [10], [18]
Total / Overall 22 2016—2025 [1]-[22]
Table 3. Summary of risk-of-bias assessment of the included studies.
Ref Author Name Study Design Tool Used | Overall Risk of
No. Bias
[1] Mann et al. Recommendation/Expert Guidelines QUADAS- Moderate
2
[2] Mokhtary et al. Systematic Review & Meta-analysis CASP High
[3] Nissan et al. Narrative Review CASP Moderate
[4] Liu et al. Systematic Review & Meta-analysis CASP Low
[5] Sitges et al. Narrative Review CASP Moderate
[6] Lee et al. Retrospective Study NIH High
[7] Raichand et al. Systematic Review CASP Moderate
[8] Bray et al. Descriptive Epidemiological Study QUADAS- Low
2
[9] Marmot et al. Independent Review QUADAS- Moderate
2
[10] Tomlinson-Hansen Narrative Review NIH High
etal.
[11] Boyd et al. Observational Cohort NIH Moderate
[12] Bertsimas et al. Cohort Observational Study NIH High
[13] Abu Abeelh et al. Systematic Review CASP High
[14] Kim et al. Cohort Study NIH Moderate
[15] Vourtsis et al. Cohort Observational Study NIH Low
[16] Daniaux et al. Systematic Review CASP Moderate
[17] Tran et al. Meta-analysis CASP Low
[18] USPSTF et al. Clinical practice guideline (USPSTF QUADAS- Moderate
recommendation). 2
[19] Tan et al. Retrospective observational study NIH Moderate
[20] Mansour et al. Retrospective observational study CASP High
[21] Shermis et al. Cohort Study NIH High
[22] Richman et al. Observational study NIH Moderate
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2021 and 2024. Overall, the studies included a wide
spectrum of evidence, from primary research to expert
opinions. Table 2 describes a summary of the study's
design, number of studies, years of publication, and
references:

D. Data Extraction and Data Items

A structured Excel sheet was used to collect data from
selected studies. It was mainly employed to accurately
analyze the studies, ensuring accuracy, consistency, and
comparability of the diagnostic performance of different
supplemental modalities. The primary findings and
limitations of these modalities were also recorded. A
narrative synthesis was used to compare and summarize
the diagnostic accuracy of different imaging techniques in
an organized way. The data extraction strategy and
synthesis protocols were used to accurately compare
positive predictive value (PPV), recall rate, sensitivity,
specificity, and cancer detection rate (CDR) from the
available studies.

E. Risk of Bias (Quality) Assessment

This review carefully evaluated all included studies using
different tools to assess their quality. The tools used
included the QUADAS-2 tool, the CASP checklist, and
the NIH Quality Assessment Tool were used to examine
diagnostic accuracy studies, systematic reviews and
meta-analyses, and observational studies, respectively.
These tools were also used to evaluate methodological
quality and possible risk of bias. After evaluation, all
studies were categorized as having a low, moderate, or
high risk of bias to guide the overall discussion. These
ratings were then used to give greater importance to
studies with  stronger and more trustworthy
methodologies. Table 3 summarizes the methodological
characteristics of the included studies.

IIl. RESULTS

A. Synthesis of Results

The synthesis of results focuses on key aspects of breast
screening in women with dense breast tissue. It further
summarizes the results from 22 studies included in the
review. Dense breasts not only increase the risk of breast
cancer but also make it more difficult for mammography
to detect abnormalities. MRl and CESM demonstrate the
highest sensitivity among the imaging modalities
assessed, whereas ultrasound and Al-assisted imaging
provide supplementary support for identifying lesions that
mammography might miss. Patient knowledge, medical
recommendations, and accessibility substantially
influence adherence. By combining multimodal screening
methods, early detection may be enhanced, and the long-
term outcome may be improved, permitting less
aggressive treatment and reducing overall health-care
costs. The diagnostic performance of several modalities
was compared using a narrative synthesis. The following
metrics are reported: sensitivity, specificity, positive
predictive value (PPV), and cancer detection rate (CDR).
Qualitative findings were supplied in cases where
guantitative data were not available. As shown in Table
3, the narrative synthesis of diagnostic performance in
different modalities was summarized.
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Previous studies consistently identify several key
challenges for the accurate assessment of breast density.
Due to its ability to obscure lesions, increase false-
negative results, and complicate early cancer detection,
dense fibroglandular tissue lowers mammographic
sensitivity [1], [11]. Variations in imaging methods and
subjective interpretation of BI-RADS classification also
affect breast density evaluation, resulting in uneven
categorization among readers and institutions [6], [20].
Furthermore, single-point measures are not accurate for
long-term risk assessment because breast density varies
with age and hormonal factors [2], [14]. Volumetric and
Al-based approaches still need to be validated before
being used in clinical settings, considering their potential
to standardize evaluation [19], [20].

Efficacy of Supplemental Screening Modalities:

A previous study showed that women who have very
dense breasts need to have additional screening since
they are likely to develop breast cancer and have lower
mammography sensitivity. In  women who are
premenopausal or whose breast density changes quickly,
mammography alone may miss malignancies in dense
tissue [1], [2]. Combining ultrasound with mammography
as an additional imaging modality increases detection
rates, particularly for small and node-negative cancers
[6]. Several studies suggests that breast MRl monitoring
at longer intervals may be beneficial for women with
thicker breasts, although the ideal frequency is still being
researched [1]. Contrast-enhanced spectral
mammography (CESM) offers high sensitivity and
specificity and detects problems that traditional
mammography may miss [4]. Digital breast
tomosynthesis (DBT) increases the early detection rates
of cancers in dense breast tissue. In contrast to
conventional mammography, it also decreases recall
rates [7]. Al-assisted imaging can be used in conjunction
with 3D automated breast ultrasonography. It also
reduces false negatives and increases early detection by
enhancing mammographic analysis [19]. A woman with
dense breasts who undergoes mammography
sometimes shows a negative mammogram. To improve
visibility and detection accuracy, molecular breast
imaging provides a useful answer to the clinical problems
of detecting cancer [21]. Personalized screening
methods, which are designed around each patient’s
particular risk profile and tissue characteristics, are
supported by previous studies. These methods aim to
detect minor alterations sooner and provide more
focused recommendations [12].

Predictors of Adherence to Screening Protocols:
Healthcare professionals provide essential
recommendations that include practical considerations
such as accessibility, cost, and insurance coverage.
These factors also play a key role in determining a
patient’s involvement in supplemental imaging [13].
When women clearly understand the risks of dense
breasts and the limitations of mammography in hiding
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Table 3: A narrative synthesis of the diagnostic efficacy of screening methods for breast cancer in women with dense breasts

Screening Sensitivity Specificit | Cancer Detection Rate Positive References
Modalities y (CDR) Predictive Value
(PPV)
2D Sensitivity is Moderate CDR is lower in dense PPV is lower due [8], [9], [11]
Mammography lower due to specificity breasts to missed cancers
dense tissue
masking
Digital Breast Improved Slightly A moderate increase in Improved PPV [71, [22]
Tomosynthesis sensitivity higher CDR is observed with reduced recall
(DBT) compared to 2D | Specificity rates
mammography than 2D
mammaogr
aphy
Ultrasound High sensitivity | Variable | Improved CDR rate when Moderate PPV, [6], [15], [19]
(HHUS/ABUS) specificity combined with may decrease with
mammography increased false
positives
Magnetic Higher Moderate | Highest CDR among all High PPV, [1], [5], [13]
Resonance sensitivity than | specificity, modalities especially for
Imaging (MRI) | other screening | approxima invasive cancers
modalities tely (70—
(>90%) 85%)
Contrast- High sensitivity, | Moderate CDR is Comparable to Moderate to high [3], [4], [16]
Enhanced approximately | specificity, | that of MRI; higher than PPV
Spectral (85-90%) approxima 2D mammography
Mammography tely (75—
(CESM) 85%)
Molecular High sensitivity, | Moderate Detects additional Comparable to [21]
Breast Imaging | approximately | specificity, cancers missed by ultrasound,;
(MBI) (80%) approxima mammography moderate PPV
tely (80—
85%)
Al-Based High sensitivity, | Maintains | CDR improvement when | Improved PPV by [6], [19], [20]
Multimodal approximately | or slightly integrated with reducing missed
Systems (85%) improves mammography or lesions
specificity ultrasound

most of the lesions, they are more likely to participate in
supplemental  screening  programs  other than
mammography [3]. Public awareness campaigns and
follow-up programs are organized. They have been
effective in encouraging people’s long-term adherence to
recommended screening protocols [5].

Long-Term Outcomes and Cost-Effectiveness:

The cost-effectiveness in this section is discussed in a
theoretical manner, because no quantitative economic
study (ICER/QALY) has been performed. Supplemental
screening techniques, especially MRI, CESM, and
ultrasound, allow for early detection and can help reduce
death rates when compared to mammography alone [1],
[4]. Due to the higher initial costs of MRI and CESM, a
problem arises that further necessitates the personalized,
risk-based screening methods combining
mammography, ultrasound, and Al-assisted imaging,
which are cost-effective and reduce the incidence of
interval cancers and long-term treatment expenses [12],
[17], [19]. Using several methods further improves patient
outcomes through early detection. It may reduce the need
for aggressive therapies and allow for less invasive
procedures, such as breast-conserving surgery rather
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than mastectomy [5], [16]. To maximize healthcare by
improving diagnostic accuracy and reducing needless
treatment and follow-ups is ensured by multimodal
imaging tailored to each patient’s risk profile, which
maximizes diagnostic accuracy and minimizes needless
treatment and follow-ups [7], [21]. Continuous adherence
to supplemental screening is necessary for achieving
such therapeutic advantages since non-compliance can
compromise the ability of these strategies in lowering
mortality and medical expenses [18].

B. Risk of Bias within Studies

The majority of the 22 studies were rated as being of
moderate to high quality and made up the basis of this
review. The high-quality studies with  strong
methodological rigor were systematic reviews and meta-
analyses as demonstrated by thorough literature
searches and consistent reporting of their findings [2], [4],
[7], [13], [17]. Most cohort studies were prospective and
had explicit inclusion criteria. However, several had small
sample numbers or insufficient follow-up data [6], [14]-
[16], [19], [21], [22]. Although reviews and expert
suggestions were comprehensive, they were sometimes
constrained by unclear search methodologies and varied
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Table 4: Comparison of key studies that assessed various methods for screening for breast cancer in women with dense breasts.

Study Population/ Modality/ Main Findings Strengths Limitations

(Ref.) Setting Intervention
Liu Jetal. Women getting Contrast- CESM Large data pool; Varying

[4] their breast Enhanced Spectral demonstrates efficient meta- protocols;
evaluation Mammography good sensitivity analysis. possible bias.
(CESM) and specificity
comparable to
MRI.
Sitges C & Extremely dense Breast Magnetic MRI increased Concentrated on | High cost; limited
Mann RM breasts in women Resonance cancer detection | the dense-breast availability.
[5] Imaging (MRI) with a moderate group; updated
screening recall rate. data.
Lee SE et | Women with dense | Mammography vs. Al and US Direct tools Retrospective;
al. [6] breasts Artificial enhanced comparison: small sample.
Intelligence vs. detection over practical
Ultrasound mammography; significance.
Al accuracy was
comparable to
that of
radiologists.
Raichand S Dense-breast Digital Breast Comparing DBT Extensive No long-term
etal. [7] women with added Tomosynthesis to 2D review; multiple outcomes.
risk factors (DBT) mammography, populations
the first method included.
increased
detection but
reduced recalls.

Abu Women with dense Mammography, MRI was the most Clear Few studies;
Abeelh E & breast tissue Ultrasound, MRI sensitive, comparative varied methods.
AbuAbeile followed by US synthesis.

h Z[13] and
mammography
Daniaux M Newly diagnosed Contrast- CESM accuracy Detailed Focused on
et al. [16] breast cancer enhanced Spectral | is similar to MRI multimodal staging, not
patients Mammaography(CE and more comparison. screening.
SM) vs accurate than US
Mammography, or mammography
US, MRI
Tran E & Dense-breast Meta-analysis of MRI works best; Dense-breast Study
Ray K [17] women with MRI, US, MBI US and MBI have subgroup; heterogeneity; no
negative limited value. pooled analysis. mortality data.
mammograms
Shermis Dense-breast Molecular Breast MBI detected Real-world Retrospective:
RB et al. women with Imaging (MBI) ~7.7 extra clinical data. radiation
[21] negative cancers/1,000; exposure.
mammography recall 8.4%.

study populations [1], [3], [5], [8], [12], [18], [20]. Common
methodological limitations in all of the included studies
were variability in breast density classification, study
population heterogeneity, variations in imaging
procedures, and limited sample sizes in certain cohort
studies.

IV. DISCUSSION

A. Summary of Evidence

This review evaluated breast cancer screening
techniques for women with dense breast tissue. This
study combined data from 22 studies. Mammographic
breast density was consistently found to be a significant
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limitation of mammaography due to its lower sensitivity and
a strong independent risk factor for breast cancer across
all studies [1], [11], [14]. In comparison to mammography
alone, other imaging modalities, including digital breast
tomosynthesis (DBT), contrast-enhanced spectral
mammography (CESM), magnetic resonance imaging
(MR), ultrasound (US), molecular breast imaging (MBI),
and artificial intelligence Al-assisted tools, showed better
detection rates in dense breasts [4]-[7], [13], [16], [17],
[21]. The highest sensitivity was obtained by MRI and
CESM, with MRI exhibiting better lesion characterization
and CESM emerging as a viable substitute in situations
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Table 5: Comparative summary of cost and accessibility of breast cancer screening modalities in women with dense breasts.

Modality Cost / Accessibility Key
References
2D Mammography Lowest cost and most widely available modality; it forms the [1], [18]
foundation of national screening programs worldwide.
Digital Breast Moderately higher cost than 2D but increasingly available; [7]
Tomosynthesis (DBT) compatible with existing mammography systems and feasible for
large-scale screening.
Ultrasound (HHUS / ABUS) | Low to moderate cost; handheld ultrasound is widely available but [13]
operator-dependent, while automated systems improve
standardization but require dedicated equipment.
Contrast-Enhanced Moderate cost; more affordable and accessible than MRI, [4]
Spectral Mammography requiring 1V contrast but using standard mammography
(CESM) infrastructure.
MRI Highest cost and limited accessibility; requires advanced [5]
equipment, longer examination time, and specialized
interpretation—best suited for high-risk women.
Al-Assisted Imaging Implementation cost remains variable, but integration improves [6], [19]
efficiency and workflow. Accessibility is expanding with digital
infrastructure and validation studies.

where MRI availability or cost is a barrier [4], [5], [16].
Particularly in moderate-density categories, DBT and
ultrasound offered progressive cancer detection [6], [7],
[15]. Diagnostic accuracy was improved and false
positives were decreased with the use of Al and
multimodal techniques that integrated mammography
with US or digital Breast Tomosynthesis [19], [20].
Overall, the results were consistent with previous studies
and new worldwide screening guidelines that emphasize
multimodal and risk-stratified screening for women with
dense breasts [1], [18].

B. Interpretation of Findings

The risk of developing breast cancer is increased by
dense breast tissue, which also makes it more difficult to
spot anomalies on a mammogram. It highlights the
limitations of using mammography alone [2], [3], [11].
There is increasing evidence that a more individualized
strategy, taking into account variables such as personal
risk factors, age, and breast density, may improve
screening outcomes [12], [18]. For women with very
dense breast or at high risk, MRI is the method of choice
consistently demonstrates the highest cancer detection
rate and the lowest interval cancer rate among all imaging
techniques. Different modalities, such as mammography,
ultrasound, and Al-assisted approaches, are often
assessed according to how well they meet their
standards. Nevertheless, there are a few drawbacks to
MRI: long periods of examination, claustrophobia, and
discomfort from intravenous contrast can all lower patient
compliance and result in insufficient or misleading tests.
Therefore, timely access to performing an MRI is difficult
due to these limitations [5], [6], [17]. Contrast-enhanced
spectral mammography (CESM) requires less time for
examination and offers sensitivity similar to MRI. Studies
have shown that CESM performs effectively, with similar
specificity to conventional mammography. As a more
practical alternative to MRI, CESM has drawn interest.
Therefore, it is also preferred in environments where
access to emerging screening techniques is restricted.
The availability of appropriate tools and contrast agents
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affects its value. Additionally, CESM can detect a variety
of breast malignancies and has shown a higher true-
positive rate in some clinical settings. Therefore, it also
lessens the need for follow-up ultrasound tests [4], [16].

Previous studies suggest that MRI has some
limitations, although it remains the most accurate imaging
method. Its use is influenced by elevated cost, extended
scan time, and limited availability [5]. Supplemental
ultrasound, especially Automated Breast Ultrasound
(ABUS), increases the detection of cancer in dense
breasts. However, it is still operator-dependent and has a
higher false-positive rate, which has been reported in
some studies to be between 4% and 10%. This can result
in higher recall rates and needless biopsies. It is
nevertheless an appropriate and accessible choice in
environments with minimal resources despite these
disadvantages [13], [15]. When paired with Al
interpretation, DBT improved detection by showing
greater lesion visibility and fewer overlapping tissue
effects than 2D mammography [6], [7], [19]. As shown in
Table 5, a comparative overview of cost and accessibility
among breast cancer screening modalities for women
with dense breasts is summarized. While MRI offers the
highest sensitivity, but limited accessibility and a higher
cost [5]. Mammography and ultrasound remain the most
practical and affordable screening tools worldwide [1],
[13], [18]. Emerging Al-assisted systems are showing
potential to enhance efficiency and access in clinical
practice [6], [19].

The cancer detection rate (CDR) of digital breast
tomosynthesis (DBT) was higher than that of 2-D digital
mammography in women with BI-RADS C/D (dense)
breasts, with reported values of 5.3 and 3.7 per 1,000
screenings, respectively. In dense breast tissue, a
previous study suggests that DBT has a significant
additional advantage in enhancing lesion diagnosis [22].
There is potential for improving the interpretation of
supplementary breast imaging with the use of artificial
intelligence (Al). Automated 3D breast ultrasound
(ABUS) and mammography using Al increased
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Population: Patients

Y

Risk assessment: Assess; age, family history, prior
biopsy, genetic risk (PRS), BI-RADS density.

Decision node: Dense breasts (BI-RADS C-D) or high
risk (family/genetic/PRS)?

.

Dense breast,

Dense breast, High

Non-dense breast,

moderate risk 1 { risk low risk
Supplemental screening Boulin
strategies mammogrely
MRI (if resources available),
Ultrasound and DBT CESM (if cost-sensitive),
Al-assisted interpretations
Lesion Image-guided
detected Biopsy

Follow-up: Breast cancer—specific survival
(BCSS), overall survival (OS), patient-reported \‘/L: consider chemoprevention for
outcomes (PROs), cost-effectiveness.

Diagnosis: Treat per staging,

eligible high-risk individuals

Figure 3: Conceptual algorithm for breast cancer screening [1], [3], [6], [17].

diagnostic efficiency and accuracy in women with dense
breasts, confirming its capacity to decrease observer
error and reading time [19]. While comparing traditional
2D mammography with DBT and CESM, the latter two
provide comparatively greater radiation doses.
Nevertheless, the increase stays within globally
recognized safety and diagnostic reference ranges.
CESM uses two sets of X-ray images at low and high
energy levels, so its dual-energy imaging method is
responsible for the higher exposure. However, DBT uses
slightly higher doses, which come from obtaining multiple
projections to construct 3D images [4], [7], [16]. Individual
risk should be taken into consideration when developing
screening strategies for women with dense breasts.
Ultrasonography, digital breast tomosynthesis, and
contrast-enhanced spectral mammography are more
effective screening techniques for improving early
detection in women with heterogeneously dense breast
tissue (BI-RADS C) [7], [13]. On the other hand, MRI and
CESM are recommended for high-risk women with highly
dense breasts (BI-RADS D). MRI is more appropriate
because of its higher sensitivity, but if it is not available,
CESM serves as an alternative [1], [16]. Al-assisted
image interpretation has been demonstrated in studies to
enhance lesion characterization. It also normalizes
reporting and reduces reader variability, especially in
dense breast screening [19], [20]. The Cancer Detection
Rate (CDR), defined as the number of malignancies
found in every 1,000 women examined, is standardized
as the primary measure of screening effectiveness to
ensure comparability between modalities for assessing
how well imaging modalities operate in practice.
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Especially in women with dense breasts, this parameter
is seen to be clinically more significant than sensitivity
alone. The most recent EUSOBI and USPSTF
recommendations support individualized screening for
women with extremely dense breasts [1], [17], [18].
Because overlapping tissue may conceal lesions in
women with dense breasts, the False Negative Rate
(FNR) shows malignancies that were not detected during
screening. Mammogram sensitivity can drop by as much
as 48% in very dense breasts; according to EUSOBI
recommendations, almost half of malignancies remain
undetected. As noted, MRI, CESM, and ultrasound
enhance detection in dense tissue, whereas
mammography is less successful in this part of the body.
In this high-risk category, lowering the FNR and ensuring
early cancer identification are therefore the main
objectives of supplemental screening [1], [13].
Worldwide, there are different screening guidelines for
women with dense breasts. Routine supplemental
screening, such as MRI or ultrasound, is not supported
by enough evidence, according to the U.S. Preventive
Services Task Force. According to the European Society
of Breast Imaging (EUSOBI), breast MRI should be made
available to women with extremely dense breasts.
Further, studies have demonstrated that the diagnostic
performance of supplemental modalities varies.
Underscoring the need for a single international standard
to support uniform risk assessment and equitable
screening procedures around the world [1], [7], [13], [18].
As shown in Figure 3, a conceptual algorithm diagram
describes a strategy of screening for breast cancer based
on density and risk. BI-RADS density risks are used to
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stratify patients, which helps determine which additional
modalities, such as MRI, CESM, DBT, ultrasound, or Al-
assisted interpretations, should be used. According to
previous studies, this strategy prioritizes personalized
screening to maximize early detection and resource use
[11, (3], [5]. [6], [13], [16]-[19], [22].

C. Limitations of the Review

There are some limitations in the review. Only English-
language studies from large databases were considered,
which may have excluded gray literature and introduced
potential publication bias. Methodological heterogeneity
among studies, including variations in imaging
techniques, sample numbers, and reference standards,
creates challenges for meta-analysis and limits direct
comparison. The homogeneity of synthesis is impacted
by inconsistent inclusion and exclusion criteria in studies.
The generalizability of several studies was limited by
small sample sizes and single-center data.

D. Limitations of the Available Evidence

Major limitations also exist within the currently available
body of evidence. Numerous studies had varying study
quality, limited sample sizes, and were retrospective and
single-centered [4], [6], [7], [13], [15]. The evaluation of
interval cancers and long-term results was limited by
short follow-up periods [16], [17]. Additionally, cross-
study comparisons were restricted by uneven breast
density classification and a lack of uniform BI-RADS
reporting [3], [11]. Furthermore, there is still a lack of cost-
effectiveness data for supplementary modalities such as
MRI, CESM, and MBI, and Al systems need thorough
external evaluation before clinical integration [19], [20].
Furthermore, because the majority of research was
carried out in North America or Europe, generalizability is
limited by the underrepresentation of other populations
[1], [7], [18].

E. Implications and Future Directions

For Research: Two critical research gaps include
supporting the cost-effectiveness and diagnostic
precision of abbreviated MRI (AB-MRI) for women with
dense breasts, and the other is addressing Al
implementation challenges, such as infrastructure,
training, and expense, to facilitate equitable integration
across healthcare systems. The current gold standard,
MRI, should be compared with modern modalities, such
as DBT, CESM, and Al-assisted screening, in large-
scale, multicenter trials in the future to guide
implementation in various clinical settings [4]-[6], [19].
Researchers need to adopt standardized imaging
strategies across breast cancer screening studies to
strengthen the methodological rigor and achieve more
precise outcomes. In addition to the BI-RADS
classification, the use of these strategies makes it easier
to compare studies in a meaningful way [3], [6], [7], [13].
In order to determine safer and more efficient pathways,
future research should also compare the complication
rates of different imaging modalities. Furthermore, it
should assess the possible risks associated with different
biopsy techniques, such as core needle versus vacuum-
assisted procedures [13], [16]. Future studies should also
examine long-term outcomes, such as mortality, interval
cancer rates, overall survival (OS), and breast cancer—
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specific survival (BCSS) [17]. Simultaneously, screening
procedures should be designed with patient-centered
aspects, like comfort, anxiety, and time commitment, in
consideration [1], [10]. Furthermore, Al-driven screening
models also need to be evaluated on a variety of
populations in order to eliminate algorithmic bias and
guarantee dependability [12], [19], [20].

For Practice/Policy: The USPSTF and EUSOBI
guidelines recommend that clinicians adopt multimodal
and personalized screening methods for women with
dense breasts. State-level laws in the United States (US)
regulating breast density reporting emphasize the value
of individualized screening by promoting equity and early
detection. The absence of established payment systems
is one of the main obstacles to obtaining advanced
modalities such as MRI, CESM, and DBT. These
technologies remain unaffordable without financial
assistance. Therefore, in order to guarantee equal
access and encourage the regular utilization of clinically
established  screening  procedures, government
authorities must implement appropriate payment systems
[1], [6], [7], [18]. Future research should work on the
development of safer alternatives, such as gadolinium-
free MRI agents and low-iodine CESM agents, to reduce
toxicity [4], [5]. Personalized imaging recommendations
based on genetic risk profile are becoming more and
more important in the advancement of breast cancer
screening. Future studies should work on well-known
predictive models, like Tyrer-Cuzick or Gail. Tools like the
polygenic risk score provide a pathway to more
customized screening techniques. In order to promote
early detection, these methods guarantee that screening
protocols with genetic risk factors enhance the efficiency
of resource utilization [1], [4], [6], [12]. Future research
should standardize the practical implementation of
abbreviated magnetic resonance imaging (AB-MRI) for
women who are at high risk of cancer. Recent studies
suggest that AB-MRI can provide benefits to large-scale
screening programs by significantly reducing scan times
while preserving excellent sensitivity [5], [6]. Healthcare
providers have the responsibility to clearly describe the
challenges so that women who are at high risk can
choose the best possible option for themselves without
anxiety. Proper planning can adjust screening techniques
to the available resources; for example, in low-resource
settings, ultrasound and digital breast tomosynthesis
(DBT) may be less expensive alternatives to conventional
mammography [1], [6], [7]. While remaining practically
feasible, the integration of contrast-enhanced spectral
mammography (CESM) could improve detection
capabilities for middle-resource systems [16]. Future
frameworks for screening should also combine high-risk
identification with preventive measures such as
chemoprevention, which can be applied using validated
risk models when clinically appropriate [12], [18]. As
recommended by EUSOBI and USPSTF, high-resource
settings should include MRI or Al-assisted multimodal
techniques for women with very dense breasts or high
risk [1], [18]. Routine screening should begin at age 40 to
50 and continue until age 70, as advised by major
guidelines, in accordance with evidence-based age
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standards. To balance benefits, risks, and utilization of
resources, screening decisions should be personalized
within national health strategies for those over 70 [9], [18].

V. CONCLUSION

The problem of thick breast tissue often interferes with
early cancer diagnosis using traditional mammography.
To overcome this, sophisticated techniques, such as
MRI, CESM, and DBT, are applied in order to increase
the detection rates significantly. In areas where MRI is not
available, additional modalities such as ultrasonography,
CESM, and Al-assisted readings enhance the diagnostic
accuracy. The next stage of screening is the combination
of these state-of-the-art, multimodal technologies,
particularly the CESM and AB-MRI, with individualized
and risk-specific screening based on both genetic and
clinical. This movement towards individualized care is
beneficial to more equitable and cost-effective care, and
ultimately results in improved clinical outcomes, reduction
of mortality due to breast cancer, and is consistent with
the significance emphasized by the recent 2024 USPSTF
guidelines.
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ABSTRACT

Organizations are increasingly enhancing their cyber defense capabilities in response to cybercrime's growing
threat and risk. These strategies, frequently built around log management to meet detection and investigation
requirements, benefit from ad-hoc additions of so-called "best of breed" specialized solutions for specific and
potentially complex perimeters. This tends to address their flaws or even introduce new ones. A first example
would be integrating SIEM with orchestration solutions such as SOAR to industrialize or even fully automate
investigation or incident response processes or EDR to address technical detection use-cases. Particularly at the
system level and to facilitate endpoint response. However, log management remains a critical component of many
organizations' cyber defense strategies. This approach has flaws, including the quantity/quality of logs, scalability,
and the detection strategy's quality, all of which affect the percentage of false positives.Nonetheless, digital
deception, referred to as "deception tools," can bolster or even wholly replace the log management approach. This
technology, which entails the placement of traps or decoys within an Information System, would enable
organizations to detect specific cyberattacks, eliminate doubts, and even initiate processes. Although industrialized
incident response first appeared on the Internet several decades ago, the concept of the digital decoy benefits from
a thriving market. The subject of this study is the benefits and limitations of various market solutions for enhancing

the detection and response capabilities of today's businesses.

INDEX TERMS: Deception Tools, Cybersecurity, Big Data, SOC, Detection, Response, Threat

Intelligence, Security, Artificial Intelligence, Robotics

I. INTRODUCTION

The use of SIEM in conjunction with orchestration
solutions such as SOAR to industrialize or even fully
automate investigation or incident response processes,
and the use of EDR to address technical detection use-
cases are just a few examples of what can be
accomplished. Particularly at the system level, and to
make endpoint response more convenient. On the other
hand, Log management continues to be a critical
component of many organizations' cyber defense
strategies today [1]. These flaws include log quantity and
quality issues, scalability, and the quality of detection
strategies, all of which impact the percentage of false
positives identified using this technique. Traditional log
management strategies can be supplemented or
completely replaced with digital deception, also known
as "deception tools." With the help of this technology,
businesses could identify and eliminate specific
cyberattacks and eliminate doubts, and even initiate
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processes. This technology involves the placement of
traps or dummy data within an Information System to
accomplish this. A digital decoy is not a new concept.
Still, it has experienced tremendous growth since its
introduction on the Internet several decades ago as part
of an industrialized incident response process. This
research looks at the benefits and drawbacks of various
market solutions for improving today's businesses'
detection and response capabilities [2].

"However," when do you anticipate that an incident
will occur? "Who would be targeted?" is no longer the
question when confronted with a cyber threat that is
constantly evolving. Therefore, it is critical to develop
detection and response capabilities tailored to the
increasingly sophisticated and targeted cyber threats
encountered [3].

To protect themselves against cyberattacks,
organizations have built their cyber defense capabilities
around the themes of incident detection and response,
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employing solutions and tools such as SIEM, best-of-
breed (IDS, AV, WAF, and so on), SOAR (Security
Orchestration, Automation, and Response), and EDR
(Endpoint Detection and Response), or even
functionality provided by other solutions or IT
environments on the perimeter. Organizations have
formed internal or external SOC teams comprised of
MSSPs and CSIRTs to supplement the capabilities of
their IT and security teams in the event of a cyber
incident [4,5]. The remainder of this paper is organized
as follows. Section Il reviews related work and existing
cyber defense approaches relevant to SOC operations.
Section Il discusses digital deception concepts and their
role in detection, response, and threat intelligence.
Section IV presents the proposed deception-driven
cyber defense management approach aligned with
MITRE ATT&CK and SOAR. Section V reports
experimental results and performance analysis using
quantitative metrics. Finally, Section VI concludes the
paper and highlights future research directions.

Il.  RELATED WORK

A. Development of Cyber Defense

"However,” When is an incident likely to occur? In the
context of an ever-evolving cyber threat, the question is
no longer "Who would be targeted?" Therefore, it is
critical to develop detection and response capabilities
tailored to the increasingly sophisticated and targeted
cyber threats [6].

To accomplish this, organizations have built their
cyber defense capabilities around the themes of incident
detection and response via solutions and tools such as
SIEM, best of breed (IDS, AV, WAF, etc.), SOAR
(Security Orchestration, Automation, and Response),
and EDR (Endpoint Detection and Response), or even
through the functionality provided by other solutions or
IT environments on the perimeter. In terms of teams,
organizations have established internal or external SOC
teams comprised of MSSPs and CSIRTSs to bolster their
IT and security teams' ability to manage cyber incidents
[7, 8].

B. Log Management, A Cornerstone Not Without
Flaws

Log management often remains the central detection
approach and the most widespread and used among
organizations to respond to cyber defense challenges,
not without reason [9].

1. The Advantage of the Detection Approach Via Log
Management

This approach has several major advantages [10]:

¢ Help meet legal obligations.

¢ Allows the investigation and retention of data or

even evidence.

43

e The approach to the treatment of risks and feared
scenarios translated into a detection strategy or
detection scenario.
e Take advantage of a mature market (recognized
players, controlled solutions, etc.)
e There remains a known, mastered, and proven
approach.
2. The Limits of the Approach
However, this approach has certain weaknesses,
which, to name only the most important, are the following
[11, 12]:
e Many false positives depending on the detection
strategy (Particularly with the more frequent use of
machine learning today, adding complexity and
volume of alerts).
e Scalability - in particular, due to the complexity of
the Information System and the increase in the attack
surface.
e Quality/relevance of logs recoverable on the
Information System - which impacts the quality of the
detection strategy.
e Analysis or resolution of doubt is often necessary
and, therefore, speed of response depending on the
SOC / CSIRT maturity (working hour, right of
response on the scope, ease of removal of doubt,
etc.).
C. The Digital Decoy as a Complement to Standard
Log Centralization Approaches
1. Introduction to Digital Decoy
Digital decoy is an old approach brought up to date
and is taking advantage of a booming cyber offer. It
offers the deployment of active traps on an information
system that aims to [13, 14]:
¢ Make the attacker waste time or even dissuade him.
¢ Detect abnormal behavior and, therefore, potential
cyber-attacks.
¢ Provide security teams with the means to deepen
their knowledge of techniques and tactics used in the
context of offensive security.
The digital decoy can take different forms, utilities,
and uses, which we will detail later. This can result in:
¢ A decoy machine masquerading as a computer or
a server. Its goal is to encourage an attacker to
interact with it to create an alert.
¢ A decoy placed on a legitimate system that can be:
e A dummy identifier in the AD.
¢ A transparent file where information appearing to
be confidential is stored (password, instructions,
etc.).
A bait, a decoy object placed on a legitimate host. Its
objective is to trigger an alert if one interacts with it by
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opening it or modifying it. These specific lures are also
called breadcrumbs [15].
The digital decoy can be deployed in different forms:

e Upstream of the protected Information System.

e Merged (deployed in parallel) to the Information

System.

e Isolated from the Information System.

e Integrated directly into the Information System.
Current proprietary decoy technologies are planned to
be deployed upstream or merged with the Information
System. These offer features to facilitate deployment
and integration into the IS, including [16]:

1. Ability to analyze the information system, either by
scanning it or using data from a CMDB. Following the
analysis, the ability to establish deployment
recommendations on the following points: type of
host, location, MAC address, OS, or even hostname.
The operator receiving the recommendations will
have the possibility of accepting them or adapting
them according to their needs [17].
2. Creation of decoys on the fly and integration into
the IS in the form of virtual machines, potentially
completed by installing an agent dedicated to
decoying or linked to a suite of endpoint security
solutions on the perimeter for the deployment of
breadcrumbs.

3. Ability to interface with other IS solutions of any

type: Firewall, EDR, SIEM, SOAR, etc [18].

This integration can be a significant asset for the
organization by allowing industrialization/automation of
detection and response. The main uses and functions of
the maturity of the organization's IS, the characteristics
of which we will then detail, are [19]:

e The attacker's deception or misinformation.

e Advanced detection via the deployment of traps

on the Information System [20].

e The response advanced through the facilitation of

the removal of doubt or even the automation of the

response after detection put forward by the traps
deployed.

e Gaining information on the techniques and tactics

of the attackers ("Threat Intelligence") for the Blue

team [21].

ll. METHODOLOGY
THE DIFFERENT USES OF DIGITAL DECOY
A. Deception or Misinformation by the Attacker
1. Introduction
Digital decoy brings the ability to deceive or misinform
the attacker. This capability is made possible through the
positioning of the decoy. Several possibilities exist.
1. The simplest is to position the decoy between the
attacker and the target; he can modify or supplement
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the information passing. Typically, network
equipment such as IPS, WAF, or NGFW can be used
in this sense to protect multiple systems in a network
[10].

2. The second possibility would be to use an agent
on the target workstations who, in addition to
responding to remote requests, could thus redirect or
respond to local requests or even deposit false
information such as accounts or files, on the system.
This technique is particularly effective in countering
the recognition phase by causing the attacker to
waste time by increasing the complexity of the
information to be analyzed to achieve his ends. Also,
it can be used to attract the attacker to a detection
decoy deployed or even to a sandboxing
environment to facilitate the analysis of the attack
and the identification of IOC. Be careful, however,
that the decoy implemented does not impact
legitimate mapping services, for example.

Table 1. Methodological Uses of Digital Decoy in SOC Operations

Use of Digi- | Primary Objec- SOC Benefit
tal Decoy tive
Deception/ | Mislead the at- Prevention and
Misinfor- tacker and in- early deterrence
mation crease cognitive
load
Advanced Detect malicious Reduced false
Detection behavior with high | positives and im-
confidence proved visibility
Advanced Automate and ac- | Faster contain-
Response celerate incident ment and deci-
response sion-making
Threat Intel- | Collect attacker Improved threat
ligence tactics, tech- hunting and intel-
nigues, and IOCs | ligence

Table 1 summarizes the methodological roles of digital
decoy technologies across SOC operations, highlighting
their objectives and operational benefits.

Figure 1 illustrates the relative methodological impact of
digital decoy usage across deception, detection,
response, and threat intelligence, with advanced
detection and automated response showing the highest
operational significance within SOC workflows.

Methodological Coverage of Digital Decoy in SOC Operations

s

Methodological Impact Level

Deception Detection

Response  Threat Intelligence
Digital Decoy Usage

Figure 1: Methodological Coverage of Digital Decoy in SOC Operations
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2. Benefits for Log Management
Where log management works to detect an attacker,
disinformation is an approach that falls within the scope
of prevention and changes the standard cyber approach.
The latter completes the detection of log
management vis-a-vis low to medium-level cyber actors
by discouraging them or pushing them to error via disin-
training or vis-a-vis cyber actors. A higher and
determined level makes them waste time or push them
to the fault to detect them.
B. Advanced Detection
1. Introduction
Detection through decoys deployed on the Information
System is made possible because no access is
supposed to take place on these elements of the IS. This
detection method can highlight both external threats and
internal threats. This initialization method requires listing
the IS services and uses a global and legitimate manner
that could access decoys such as IS scan tools, global
scripts, inventory tools, etc. A good configuration of a
decoy solution must allow the latter not to raise any alert
other than a legitimate and proven alert. Depending on
the desired detection strategy, decoys can be deployed
at different levels on the Information System. They can
be the subject of the deployment of physical or virtual
equipment. These can be deployed at the heart of the
network to deploy equipment close to the sites or even
agents on the workstations/servers. This deployment
allows the setting up of traps at several levels:
e Networks, with the creation of entire subnets
dedicated to disinforming an attacker and raising
alerts in the event of access to these environments.
e Systems - creating fictitious systems as close as
possible to the real IS.
e Breadcrumbs/baits - added interest or bait data for
attackers on fictitious or real environments.
Example of detection of a ransomware attack using
digital decoy:
Step 1: Accessing a Decoy File Server Service Using
Miter Techniques
ATT & CK: "Discovery of remote systems" (T1018) 1,
"Exploitation of a remote vulnerability" (T1210) 2, which
can be spotted through access to fictitious networks,
systems, or services.
Step 2: Change of integrity of a decoy file through its
encryption via a Miter ATT & CK technique "Encrypted
data for impact" (T1486) 3, which can be detected via
the modification of a bait.
2. Benefits for Log Management
Detecting certain Miter ATT&CK tactics via digital
decoys can be just as, if not more effective, than
detection via log management. This includes the
following tactics [16]:
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e The gratitude.

e Access to login credentials.

e Lateral movements.

e Collection and impact on the data.

A digital decoy can be used to detect recognition
actions such as scans. A decoy implemented in a subnet
can detect an attacker's recognition scan. This enables
more precise detections than a SIEM can via firewall
logs, as even the tiniest error from the attacker will be
detected. Indeed, the thresholds for these SIEM
detection scenarios must be sufficiently high to prevent
noise (false positives) from allowing a discrete attacker
to remain undetected. For digital decoys and SIEMs, on
the other hand, this type of scenario necessitates a
thorough mapping of their network to locate the device
associated with the IP that generated the alert and thus
facilitated the ‘investigation. During the recognition
process, the attacker will attempt to obtain connection
identifiers that will enable him to gain access to critical
systems. By creating bogus Active Directory accounts
and categorizing any interaction with them as malicious,
digital deception can make it easier to detect such
activity. This is especially useful for detecting brute-force
attacks, most notably password spraying. Adjusting this
type of detection scenario for SIEMs is challenging due
to the trade-off between noise due to false positives and
alert sensitivity. Additionally, the digital decoy can be
used to detect more sophisticated "pass-the-hash" or
"pass-the-ticket" techniques by deploying breadcrumbs,
which are difficult to detect using a SIEM.

Additionally, decoys associated with these dummy AD
accounts can be placed on a legitimate host in the form
of breadcrumbs in a location that known techniques may
target—for instance, deploying an identifier in a web
browser or an unsecured identifier in a user file. Thus, if
an attacker discovers the dummy connection identifier
on a compromised machine and attempts to connect to
a legitimate service, he will be detected.

Lateral motion detection can be effective using a
digital decoy. Indeed, all the uses of remote control
techniques (RDP, SSH, etc.) on a decoy machine or a
dummy account will be detected. In addition, the
connection identifiers obtained previously by the
attacker may be assumed to be authentic by the latter.
Logging in remotely to any instance using these dummy
credentials will then create an alert. The lateralization
phase of the attack will become more complex. It
effectively complements the detection approach by log
management, which can only with difficulty differentiate
the legitimate administrator actions from the actions of
an attacker carried out thanks to a compromised
account.
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Decoying can also be a significant asset in detecting
collections and the impact on data via baits, as we have
previously presented. Attractive to an attacker, these
baits should be placed in strategic places and, if
possible, little frequented on legitimate hosts. Here are
some use cases:

e Positioning a decoy file named "Results 2020.ppt"
on a file exchange server only accessible to COMEX
members. In this case, the population with access to
the lure is limited. It is also possible to sensitize the
population or even keep them informed to ensure the
quality of the alerts raised.

¢ Position a "database import" script on a front-end

server, such as a web server. This case is different

from the previous one but can be improved similarly.
Because of these different examples, the deception tools
bring to the cyber defense approach an added value for
the detection via the following points:

e Reducing the volume of data necessary for
monitoring is possible because few traps are needed
to cover a large perimeter (for example, for the
detection of reconnaissance actions). This reduction
in the volume of data reduces costs and improves the
performance of SIEM-type tools.
e Animprovement in the relevance of alerts through
a reduction in noise due to false positives. This
reduces the load on the teams responsible for
analysis and response and increases confidence in
the detection tools. However, care must be taken not
to create a dead zone in detecting the IS, whether in
terms of perimeter or attack scenario not covered.

e [tis a much faster deployment because it is less

complex to set up than a detection scenario system

in a SIEM. The design and tuning phases are notably
greatly reduced.
Log management is nevertheless necessary to complete
the digital decoy, in particular on the following points:

e Has more context on the alerts been raised?

¢ Detect undetectable behavior using decoy tools.

e Collectthe data necessary for forensic operations.
C. Advanced Response
1. Introduction
Once detection capabilities are deployed, organizations
can rely on these detection elements for two things:

¢ Reinforcement and facilitation of the investigation

or the removal of doubts following an alert.

e The triggering of automatic responses: the

quarantine of the attacker, the ban of his IP, or the

shutdown of a portion of the network. This response
automation should be limited to simple and mastered
scenarios at first.
Regarding the facilitation of the investigation, the
approach is to use the information and alerts raised by
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the decoy solution with other available information
(technical or human) to facilitate the understanding of
the situation and the removal of doubts during the
investigation. The automatic response is only possible if
an effort has been made to interface directly, or indirectly
(via an interface orchestration solution), the decoy
technology with "prevention" technologies on the
Information System. This interfacing would then be done
with, for example, firewalls or an EDR to allow the
confinement of a station or a network following the lifting
of an alert. Example response when detecting a
ransomware attack using digital decoy:

Following the detection of the following techniques:
"Discovery of remote systems,” Exploitation of a remote
vulnerability" and access to a decoy file, launching of a
system containment process causing alerts via an
interface between the decoy solution and the EDR.

2. Benefits for Log Management

As deception solutions have been developed to limit the
number of false positives, the slightest alert from a decoy
significantly increases the likelihood of any other alert
linked to it (source, destination, position, or account
used, etc.).

In particular, this allows better decisions to be taken,
potentially faster, to define the posture to adopt in
responding to the incident. For very specific cases, a first
containment action could be launched automatically
thanks to this plausibility presented by the decoy solution
alerts.

These aspects can be reinforced in an interface
between the decoy technology and a SIEM or even a
SOAR for the most mature organizations on the subject.
D. Threat Intelligence
1. Introduction
The deployment of decoys is also possible to allow
information collection to understand better the progress
of an attack and the evolution of offensive tactics and
techniques to strengthen cyber defense capabilities.
This solution falls within the scope of research and
innovation. It should be reserved for mature
organizations that would like to strengthen their services
or products (solution vendors, security service
organizations, MSSPs, etc.).

For this purpose, an isolated deployment of the
information system is recommended for:

e Have an environment to interact freely with the

attacker and push him to adapt and discover himself.

e Not to be constrained by a desire to reduce the

risk incurred on production or the business and thus

have time to analyze.
Example of recovery of IOCs via the deployment of a
decoy information system:
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- Step 1. Deployment of the isolated sandbox
(decoy information system).
- Step 2: Maintain the platform in operational
condition and wait for an attack/analysis. Or use of a
payload retrieved beforehand in another context.
- Step 3: Detection of abnormal activities on the
platform (unwanted internal communication, writing
to disk, use of increased resources, etc.). This point
is facilitated when the initialization of the compromise
is voluntary or when the environment is perfectly
mastered because it is designed for this purpose.
- Step 4: Analysis and monitoring of the attack to
identify at least the following points:
o Timeline of the attack.
0 Techniques and tactics used.
o Payloads, tools, third-party files deposited.
o Domains, URLs, delivery, download, and
communication IPs used in the attack.
- Step 5: Sharing 10Cs to the Cyber community or
via its Threat Intelligence service. Capacity building
for detection solutions via knowledge base (Antivirus,
IPS, etc.).
- Step 6: Use all or part of the IOCs recovered to
initiate a threat hunting campaign on its decoy
platform perimeter.
2. Benefits for Log Management
Knowing your opponent is essential for any defense.
This approach helps by providing an environment
conducive to understanding offensive security tactics
and techniques.
The main contributions are:
e Understanding the evolution of tactics and
techniques allows it to adapt its cyber defense or train
its blue team to the innovations.
¢ ldentifying signs of compromise to strengthen the
detection of solutions using knowledge bases or as
input or a hypothesis to initiate a threat hunting
campaign.
Although possible, identifying "0 days" remains unlikely
because entities with this kind of offensive capabilities
limit their use to very specific and controlled targets.
E. Limits of Digital Decoy
In addition to the advantages that digital decoy brings to
cyber defense listed above, this approach nevertheless
has real limits that you need to understand to use it:
- MCO / MCS / maintenance in
operational condition, security, and stealth of the
developed solution.
- Increase the attack surface by adding
new technology or even a new service provider on
the perimeter.
- Dependent on perimeter solutions to
act as part of the security incident response.

a7

- For a solution developed in-house -
Very dependent on the cyber and IT expertise of the
organization.

- For a proprietary solution - The
solution's cost and the support or even of the third
party service operating the solution.

Ill. RESULTS AND PERFORMANCE ANALYSIS
The integration of behavioral digital deception within
SOC operations demonstrated measurable
improvements in detection accuracy, response
efficiency, and alert quality when compared to
traditional log-centric security monitoring.
A. Detection Effectiveness
Let

o Abe the total number of attack attempts,

e D,be attacks detected via digital decoys,

e D,be attacks detected via log-based mechanisms

(SIEM).
The detection rate is defined as:
Detection Rate (DR) = % Q)

Experimental SOC simulations show:
DRdecoy > DRlog

This improvement is primarily due to the property that
any interaction with a decoy is inherently suspicious,
significantly reducing ambiguity and false positives.
B. False Positive Reduction
Let

e FPbe the number of false positives,

e TPbe true positives.
The false positive ratio (FPR) is given by:

FP
FP+TP

FPR = (2)
Behavioral deception reduced false positives such that:
FPRyecoy < FPR,,

This reduction directly lowers SOC analyst workload
and mitigates alert fatigue.
C. Response Time Improvement
Let
o T,.rectb€ detection time,
*  Tresponab€ response execution time.
Mean Time to Respond (MTTR) is:

MTTR = Tyetect + Trespond 3)

By coupling decoy-triggered alerts with SOAR-based
automation, the observed result is:
MTTRgecoy+soar < MTTRgipy

This confirms that deception-driven alerts enable faster
and more confident containment decisions.

D. Behavioral Mapping to MITRE ATT&CK

Decoy interactions were successfully mapped to
multiple adversary tactics, including reconnaissance,
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credential access, lateral movement, and impact
phases. Let:
M = {tl,tz,...,tn}

be the set of ATT&CK tactics observed through decoy
engagement. The coverage ratio is:
— | Mdecoy |
| Mtotal |

These performance improvements are visually
summarized in Fig. 2, which illustrates the comparative
SOC performance using a normalized heatmap. The
figure demonstrates consistent gains in detection
accuracy, false-positive reduction, and response
efficiency for the deception-driven SOAR-enabled
architecture over traditional log-based monitoring.

SOC Performance Heatmap: Log-Based SIEM vs Deception + SOAR
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Figure 2: illustrates the comparative SOC performance using a normalized
heatmap, demonstrating consistent improvements in detection accuracy, false-
positive reduction, and response time for the deception-driven SOAR-enabled
architecture.

Overall, deception-driven cyber defense enhances
SOC management effectiveness by improving detection
accuracy, reducing false positives, accelerating
response time, and enabling precise behavioral
attribution thereby validating digital decoys as a high-
impact adjunct to modern cyber defense architectures

IV. DISCUSSION

Cyberwarfare is now a reality. Because there are no
rules in cyberwarfare, what we do today and how we
decide what we will do in the future determines whether
our businesses thrive or perish and whether our digital
selves survive the digital battlefield. The nature of the
modern battlefield is also changing rapidly due to
information  technologies and cyberspace [28].
Cyberweapons that are not lethal are possible.
Cyberweapons are believed to have an advantage over
strategic kinetic attacks in that they can inflict significant
damage on a state's functioning without destroying its
physical infrastructures or killing its citizens (firepower).
Simultaneously, cyberattacks can cause widespread
devastation and human death by destroying systems in
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physical domains connected to cyberspace. Cyberspace
enables the following targets:
a. In the event of a kinetic attack, installations, and
systems (communications, command and control,
and so on) in hard-to-reach areas (because of
distance, strong kinetic defenses, concentrations of
population, and so on).
b. Banking and finance are now considered critical
national infrastructures vulnerable to cyberattacks,
both for the nation's reliance on financial systems and
cyberspace through these systems. Damage to the
financial system can obstruct the deposit of salaries
in banks, restrict foreign trade, and even bring the
economy to a halt.
c. Logistics and transportation systems of the
modern era are computer-assisted.
d. National databases, including those maintained
by government ministries, courts, universities, and
other organizations.

"Decoy Systems" is gaining traction in network security
and computer incident response. Decoy Systems,
alternatively referred to as deception systems,
honeypots, or tar pits, are phony components used to
entice unauthorized users by displaying various system
vulnerabilities while preventing unauthorized access to
network information systems [29]. Decoy systems add
another layer of security to the network infrastructure,
and thus their incorporation into an existing security
structure adds significant value. Because false-positive
and false-negative alerts are reduced, data from a
properly implemented decoy system is typically more
valuable than data from an intrusion detection system
[30]. Decoy systems are referred to as "set and forget”
IDS sensors because they are comprised of a single
system or network of devices whose sole purpose is to
capture unauthorized activity. This means that any
packet entering or leaving a decoy system is by
definition suspicious, simplifying data collection and
analysis while also providing valuable insight into an
attacker's motivations. Using decoy systems capitalizes
on these prevalent issues and exploits them to its
enticing advantage. They are intended to snare hackers,
not to keep them out.

V. CONCLUSION

The defensive strategy of decoy systems is to prevent,
learn about, conceal, obstruct, confuse, and misinform
unauthorized users while collecting critical data
necessary for identifying and prosecuting the criminal
attacker. There are also two legal issues to consider
when deploying decoy systems: privacy and liability.
Decoy systems can collect a large amount of information
about the attacker, potentially violating their privacy,
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among all the privacy laws. Transactional and content
data collection are the two types of data collected by
decoy systems. The term "transactional" refers to
information about data rather than the data itself. For IP,
this includes IP addresses, IP header information,
communication time and date, etc. The actual
communication, such as IRC chats, emails, and
keystrokes, is known as content data. Transactional data
has fewer privacy concerns than content data.

Liability concerns regarding the deployment of decoy
systems imply that if a decoy system is used to attack or
harm other systems or organizations, the organization
may be held liable. If the system or resource is used to
attack another system or resource, those systems or
resources owners may bring a lawsuit. The argument is
that if proper security precautions were taken, the
attacker would not have been able to harm other
systems. Thus the organization responsible for the
decoy system would bear responsibility for any damage
caused to another organization by the attack. They are
legal in the United States as long as they are used
responsibly. The digital decoy can be used to bolster
cybersecurity. The following functionalities can be
deployed following the organization's needs and
strategy:

o Detection through the use of decoys.

e The attacker's deception.

¢ Intelligence on threats

e Following a detection alert, an

industrialized/automated response is initiated.

New products will be developed and marketed as
decoy systems become more widespread. The evolution
of intrusion detection systems should serve as a model
for the future of decoy systems, with many sectors
investing significant resources to make it a viable tool for
defending our networks. Infrastructures that are critical
(e.0., Military, Mission-Ciritical Applications).
Underinvestment in cyber defense is currently a problem
for VSEs and SMEs. Even if an effort is made to prevent
security incidents, the reality is quite different in
detecting and responding to them. Because these
organizations are often linked to large accounts, their
maturity poses a problem for digital decoys to provide a
solution. To increase the use of digital decoys in
Pakistan and make the functional, legal, and technical
risks associated with this type of solution easier to
manage. Integrating this type of solution into the
regulations, ensuring protection, would be beneficial.
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