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ABSTRACT  

We present a region-aware, end-to-end motorcycle violation detection pipeline tailored to traffic conditions in 

Punjab, Pakistan, which integrates three YOLOv11-based components into a unified framework: motorcycle 

violation detection (MCVD) for helmet compliance and multi-rider analysis, license plate detection (LPD), and 

license plate character detection (LPCD). The system integrates lightweight object detection, BoT-SORT-based 

tracking, and character-level recognition, supported by a synthetic-toreal adaptation strategy that combines 

large-scale synthetic data with limited real samples. Two specific datasets are published, a 40,000-sample 

synthetic Punjab license plate dataset (PS-LPCD) and a 650-sample real-world dataset (PR-LPCD), which are 

publicly released in order to encourage research development and adaptation to the region. Class consolidation 

enhanced MCVD performance (weighted average F1 score: 0.77) and the LPD model performed at mAP50 = 

0.99. Two-stage fine-tuning on synthetic and real samples allowed LPCD to reach a character accuracy of ≈ 

98% and a full-plate recognition rate of ≈ 90.7%, both surpassing EasyOCR and PaddleOCR, while also 

achieving lower per-plate latency. With a single motorcycle per frame, the sequential pipeline maintains a 

throughput of ≈ 9.5 FPS; the throughput reduces in scenes where there are many motorcycles. These findings 

indicate that synthetic pretraining, together with a small real fine-tuning, can be used to obtain a powerful, scalable, 

and region aware automatic license plate recognition (ALPR) system, which provides a reproducible method for 

detecting traffic violations across a variety of license-plate formats. 

 
INDEX TERMS ALPR, Helmet compliance, License plate recognition, Motorcycle violation detection, 

Multi-rider counting, Punjab, Synthetic dataset, YOLOv11 

 

I. INTRODUCTION 

Motorcycle-related traffic violations are a major 

contributor to road injuries and fatalities worldwide. The 

World Health Organization (WHO) reports that 

motorcyclists account for 21% of all road traffic deaths 

[1]. In Pakistan, motorcycles are a dominant mode of 

transport and are disproportionately represented in 

crash statistics [2], [3], underscoring the need for 

effective, region-aware monitoring and enforcement 

systems. 

Although the previous literature has already generated 

precise approaches to individual tasks such as helmet 

detection [4], multi-rider counting [4], and automatic 

license plate recognition (ALPR) [5], most systems 

address these sub-tasks in isolation. Moreover, reliance 

on generic datasets and off-the-shelf OCR engines (e.g., 

EasyOCR, Tesseract) limits robustness in regions where 

license plate formats and scripts vary. This constrains 

both applicability and reproducibility in real-world 

deployments. 

To fill these gaps, we propose an end-to-end 

motorcycle violation detection pipeline based on 

YOLOv11. We emphasize that this work does not 

introduce new detection architectures or learning 

algorithms. Instead, the novelty lies in a systems-level 

integration of existing state-of-the-art components, 

combined with region-specific dataset design, synthetic-

to-real adaptation, and deployment-oriented evaluation. 

The system integrates three modules: MCVD 

(Motorcycle Violation Detection) for helmet-use and 

multi-rider detection, LPD (License Plate Detection) for 

plate localization, and LPCD (License Plate Character 

Detection) for character recognition. Together, these 

components form a practical, reproducible, and region-

aware motorcycle violation detection pipeline. 
OUR MAIN CONTRIBUTIONS ARE AS FOLLOWS: 

• A unified, end-to-end YOLOv11-based pipeline 

integrating helmet detection, rider counting, and 

ALPR through system-level design. 

• Two new Punjab-specific license plate character 

detection datasets (synthetic and real) released to 

support region-aware ALPR research and 

reproducibility. 

• A lightweight character-level detection approach 

that improves ALPR robustness compared to off-the-

shelf OCR engines. 

• Models trained and evaluated on augmented public 
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datasets to ensure both reproducibility and regional 

applicability. 

 
II. RELATED WORK 

Initially, the detection of helmet-use was based on 

handcrafted features and classical classifiers. As an 

example, SVMs were used on the histograms of head 

regions with background subtraction and projection 

profiling [6], moving blob extraction with K-Nearest 

Neighbor classification [7], and combined LBP, HOG, 

and Hough descriptors, achieving an accuracy of 

94.23% [8]. These methods were generally sensitive to 

lighting, occlusion, and crowding. 

Deep learning has enhanced its strength and enabled 

joint tasks. CNN-based classifiers, for example, 

achieved high accuracy (96.6%) and F1-score (94.6%) 

[9]. Various other pipelines, including YOLO-based and 

alternative approaches, have also been applied for 

helmet detection and multi-rider identification [4], [10]–

[15]. Nevertheless, although the above-mentioned 

methods work well in their intended applications, they 

are typically not integrated with the ALPR systems, 

which restricts their use in end-to-end motorcycle 

violation detection pipelines. 

In the case of Pakistan, the research on the topic has 

focused on individual tasks and not on comprehensive 

end-to-end motorcycle violation detection. Deep learning 

models have been successful in identifying the location of 

the helmet on a surveillance video with high accuracy 

[16], [17], while ALPR systems have focused on license 

plate localization, character segmentation, and OCR 

[18], [19]. Motorcycle-based end-to-end pipelines 

involving the detection of helmet violations, multi-rider, 

and region-specific license plate recognition are still 

uncommon. This gap is addressed in our work, where a 

unified framework is proposed, which is specific to 

Punjab, Pakistan. 

Several works outside Pakistan have integrated helmet 

detection with ALPR in end-to-end pipelines. In some 

cases, evaluation relied on proprietary datasets or 

generic OCR systems, and regional plate variations were 

not always addressed [20]–[24]. 

Synthetic data has emerged as a viable solution to the 

scarcity and privacy issues of license plate datasets. 

Template-based methods [25], rendering pipelines [26], 

and diffusion models [27] have shown measurable gains 

in recognition accuracy. Based on such methods, we 

generate a template-based synthetic dataset of 

character-level annotated license plates specifically for 

the Punjab, Pakistan region, complemented with 

manually labeled real images for evaluation. These 

findings, along with benchmarking studies [28], 

demonstrate the viability of synthetic plate generation as 

a reliable supplement to real data. 

 
III. METHODOLOGY 

A. SYSTEM OVERVIEW 

The suggested end to end Motorcycle Violation 

Detection system will be used to monitor helmet 

compliance, multi riders, and license plate recognition. 

The pipeline will be composed of motorcycle detection, 

tracking, license plate detection, character recognition, 

and violation classification as illustrated in Figure 1. 

The detection of motorcycles was conducted with the 

help of the YOLOv11 model that was trained on the 

COCO dataset [29]. To optimize efficiency, the system 

first employs lightweight detection and BoT-SORT 

tracking [30] to identify candidate violation frames where 

motorcycles and license plates are both visible and 

potentially readable. Only these frames are then 

processed with the heavier MCVD YOLOv11m model, 

ensuring a balance between accuracy and 

computational cost. This design prevents violations from 

being logged on unreadable plates, which is essential 

for reliable automated enforcement. 
B. DATASETS AND PREPROCESSING 

1) Motorcycle Violation Dataset (HELMET) 

The HELMET dataset [4] is a widely used benchmark 

for helmet-use and multi-rider detection and was 

adopted for training the MCVD model. It comprises 

91,000 annotated frames with 283,377 labeled object 

instances spanning 36 fine-grained classes. As is typical 

of real-world traffic data, this detailed class structure 

introduces a substantial class imbalance, with several 

safety-critical violations occurring far less frequently 

than compliant riding behaviors. 

To address this imbalance, two complementary 

strategies were employed. First, class consolidation was 

performed to simplify the label space and better reflect 

traffic enforcement practices. The front-child passenger 

(P0) class was removed, and all cases involving three or 

more riders were grouped into a single 

MoreThanTwoRider category, since any rider count 

exceeding two constitutes a violation regardless of 

helmet usage. Second, a targeted sampling approach 

was applied during training, where horizontal flipping 

augmentation was restricted to underrepresented 

classes (those with fewer than 20,000 samples). This 

selectively increases the representation of minority 

classes without distorting the natural distribution of 

dominant categories. 

 
FIGURE 1. Pipeline of the proposed End-to-End Motorcycle Violation Detection 

system, including motorcycle detection, tracking, license plate recognition, and 

violation classification. 

Following consolidation and augmentation, the dataset 

contained 318,131 annotated instances across seven 

violation-relevant classes. The class distributions before 

and after consolidation are provided in Appendix A. 
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The dataset was divided into 70% for training, 10% for 
validation, and 20% for testing. Since the original 
dataset consists primarily of CCTV footage in which 

motorcycles often appear at a distance, near-camera 
close-up views of riders and helmets are 

underrepresented. To address this limitation and improve 
robustness to real-world scale variations, we applied a 

two-step augmentation strategy: 

1) Close-up cropping: Every 10th frame containing 

a motorcycle was cropped with a padding of 0.1 (as a 

fraction of the bounding-box size) to synthetically 

generate near-camera views while preserving 

annotation coordinates. 

2) Super-resolution enhancement: The resulting 

low-resolution close-up crops were enhanced using 

RealESRGAN [31] to recover fine-grained details and 

improve object detectability. 

In addition, mosaic blending was applied to simulate 

dense traffic conditions and improve robustness to 

occlusion and scale variation. 

 
2) License Plate Detection Dataset (UFPR-ALPR) 

In the case of license plate detection, we resorted to the 

UFPR-ALPR dataset that consists of 4,500 annotated 

images that represent various types of vehicles [5]. 

Each annotation included a license-plate bounding box 

and metadata (vehicle type, camera type, lighting 

conditions). We focused on plates that are visible on 

motorcycles and on vehicle types that are relevant for 

LPD. 

To improve regional relevance for Punjab, Pakistan, 

we generated synthetic Punjab-style license plates and 

replaced the original plates in the images while 

preserving plate aspect ratios (single-line vs. double-

line), as shown in Figure 3. This augmentation doubled 

the dataset to 9,000 images. Following the original 

dataset recommendations, the split was 40% training 

(3,600 images), 40% validation (3,600 images), and 20% 

test (1,800 images) [5]. 

Training augmentations for the LPD model included 

mosaic blending, shear, perspective deformation, and 

limited horizontal flipping. This set of augmentations 

simulates viewpoint variation and minor geometric 

distortions while preserving plate legibility. 
3) License Plate Character Dataset (PS-LPCD and 

PR-LPCD) 

To train a robust character-level detector, we created the 

Punjab Synthetic License Plate Character Dataset (PS-

LPCD) and a complementary real-world dataset, the 

Punjab Real License Plate Character Dataset (PR-

LPCD). PS-LPCD contains 40,000 synthetic images 

generated across four Punjab plate templates, while PR-

LPCD comprises 650 annotated crops extracted from the 

PK-Number-Plates-V3 collection [32]. After filtering for 

Punjab templates, 500 samples were reserved for fine-

tuning and 150 for final testing. PSLPCD was split into 

80% for training and 20% for validation. Sample 

synthetic examples are shown in Figure 4. 

Both datasets are freely available for research 

purposes as part of the Punjab Pakistan Synthetic and 

Real License Plate Character Datasets (P-LPCD), 

available at Zenodo 

(https://doi.org/10.5281/zenodo.17182320) [33]. 

PS-LPCD contains 40,000 synthetic images equally 
divided among four Punjab plate templates (front/back × 
old/new; 10,000 images per template). We annotated 37 
classes: digits 0–9, uppercase letters A–Z, and a special 
class “PUNJAB” used to detect decorative or regional 
markers and to filter irrelevant glyphs. Synthetic images 
were randomized with the following augmentations to 
emulate real capture artifacts: 

• Spatial transforms applied with probability 0.7: 
translation ±10 pixels, shear ±15◦, rotation ±15◦. 
• Perspective warp (small magnitude) to simulate 
viewpoint changes. 
• Photometric and environmental noise: dirt, dust, 

Gaussian noise, and blur. 

• Motion blur applied with probability 0.5; kernel size 
n chosen randomly from odd integers in [1, 29]. 
The discrete motion-blur kernel Ki,j is defined as 

 

 
FIGURE 2. Two-stage super-resolution augmentation process. The first stage 

generates synthetic close-up views through cropping, and the second stage 

applies Real-ESRGAN to enhance visual details for improved detection 

performance. 
 

 
FIGURE 3. Synthetic replacement of license plates to adapt the dataset to 

regional characteristics. 

This kernel produces a uniform linear blur across the 

central row (horizontal) or column (vertical), modeling 

motion along the principal axes. 
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FIGURE 4. Sample synthetic license plates from PS-LPCD. 

C. MODEL ARCHITECTURE AND TRAINING 

The suggested system utilizes the models based on the 

YOLOv11 to perform three main tasks, namely, 

Motorcycle Violation Detection (MCVD), License Plate 

Detection (LPD), and License Plate Character Detection 

(LPCD). Two model versions were used: YOLOv11n, a 

small model with real time inference, and YOLOv11m, a 

large model that is designed to achieve the highest 

accuracy possible at the cost of computational 

performance [34]. 

All models were initialized with weights pretrained on 

the COCO dataset [35], a large-scale benchmark 

dataset. Pretraining provides transferable and 

generalized feature representations that improve 

performance across various vision tasks [36]. Task-

specific data preprocessing and augmentation 

strategies were then applied to enhance robustness 

under challenging traffic conditions, including occlusion, 

motion blur, and varied viewpoints. For example, MCVD 

training incorporated moderate mosaic blending to 

improve detection in dense scenes, while LPCD training 

disabled mosaic augmentation and horizontal flips to 

preserve character orientation. The LPD training used a 

mixed augmentation, which consisted of mosaic 

blending, shear, perspective deformation, and restricted 

flips to preserve the geometry of the license plates. In 

addition to these custom settings, all models utilized the 

default augmentation pipeline provided in the YOLOv11 

documentation [29]. 

The training was done on a 64-bit system with an 
NVIDIA RTX 2060 GPU (VRAM: 6GB) and an AMD 

Ryzen 7 4800H CPU (with 8 cores and 16 threads), 
along with 40 GB of RAM, and operated under the 

Windows operating system. Hyperparameters were 
tuned to balance accuracy and inference efficiency. In 

particular, the MCVD model was trained using the SGD 
optimizer with momentum, as the HELMET dataset is 
large and SGD is known to offer better generalization on 

large datasets. In contrast, the LPD and LPCD models 
were trained using the Adam optimizer, since their 

datasets are medium or small in size, where adaptive 
methods such as Adam converge faster [37]. The overall 

training configuration is summarized in Table 1. 

TABLE 1. Training configurations for MCVD, LPD, and LPCD models 

Model Epochs Batch Size Optimizer 

MCVD (YOLOv11n) 20 16 SGD 

MCVD (YOLOv11m) 15 8 SGD 

LPD (YOLOv11n) 50 16 Adam 

LPD (YOLOv11m) 20 8 Adam 

LPCD (YOLOv11n) 20 16 Adam 

All models were trained with an image size of 640 × 640. 

Complete training and validation curves, including 
loss (box, cls, dfl), mAP, precision, and recall for all 
YOLOv11 models, are provided in Appendix B for 
reference and reproducibility. 

In the case of LPCD, domain adaptation was 

performed through a two-step fine-tuning process on the 

Punjab Real License Plate Character Dataset (PR-

LPCD) following the initial training, as shown in Table 1. 

In Stage One, the first eight layers were frozen, and the 

model was trained for 10 epochs with a learning rate of 

1 × 10−5 and a batch size of 8. In Stage Two, only the 

first four layers remained frozen, and training continued 

for another 10 epochs with a reduced learning rate of 1 

× 10−6. This gradual unfreezing approach allowed the 

model to fit well to real-world data and alleviate 

overfitting while retaining the generalizable 

characteristics acquired in synthetic training. 
D. LICENSE PLATE CLASSIFICATION 

The LPCD pipeline includes a license plate layout 
classification step in order to allow the correct 
sequencing of the detected characters, separating 
single-line and double-line plates. This difference is 
essential, as the position of the characters varies 
dramatically across layouts. 

The classification is based on a normalized vertical 
variation measure that is calculated using the bounding 
boxes of the identified characters. Let yi denote the 
vertical center of the ith character, and hi its bounding 
box height. The metric is defined as: 

 

where σy represents the standard deviation of the 
vertical centers, µh the mean character height, and N 
the total number of detected characters. 

Plates where the normalized variation was more than 
0.45 were defined as double-line because the 
characters were more vertically spread. Values below 
this threshold indicated single-line plates. The threshold 
was chosen empirically in steps of 0.05 by comparing 
the accuracy of classification on the PR-LPCD data. 

After classification, single-line plates were read 

sequentially, whereas double-line plates were parsed 

line by line. For double-line plates, a vertical midline, 

computed as the average of all vertical points, separates 

the two lines, which are read independently. Additional 

heuristics were incorporated to improve robustness, 

such as identifying the smaller-sized final two digits of 

the registration year that commonly appear on Punjab 

single-line plates. 

Figure 5 illustrates the process, showing bounding box 

distributions for singleand double-line plates. A vertical 

yellow midline separates the two lines in double-line 

plates, while red dots mark each character’s center, and 

dotted red lines indicate the spread from the midline. 
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FIGURE 5. Normalized Vertical Variations for Single-Line and Double-Line 

License Plates. Red dots indicate character centers, dotted red lines show the 

vertical spread, and the yellow midline separates the two lines in double-line 

plates. 

IV. RESULTS AND DISCUSSION 

A. EVALUATION METRICS 

The performance of the proposed MCVD system was 
evaluated using metrics that reflect both detection 
accuracy and computational efficiency. For object 

detection, the primary metric is mean Average Precision 
at an IoU threshold of 0.5 (mAP@0.5), which quantifies 

the model’s ability to correctly localize and classify 
objects. Formally, for C classes and APc representing 
the average precision for class c: 

 

To provide a stricter assessment of detection 
robustness, mAP averaged over IoU thresholds from 0.5 
to 0.95 in 0.05 increments (mAP@[0.5:0.95]) is 
computed as: 

 

Given the residual imbalance across violation 
categories, the weighted F1-score was used as the 
primary evaluation metric for MCVD to ensure fair 
performance assessment across both frequent and rare 
classes. This is defined as: 

 
where nc denotes the number of true samples in class c 

and F 1c is the F1-score for that class. 
In addition, standard evaluation metrics such as 

accuracy, precision, recall, and F1-score are computed 

to provide additional insights into the system’s 

performance. These are defined as: 

 

 

where TP , FP , FN , and TN represent true 

positives, false positives, false negatives, and true 

negatives, respectively. 

To assess computational efficiency, inference speed 

was measured in frames per second (FPS). Higher FPS 

values indicate faster processing, which is crucial for 

real-time traffic monitoring applications. 

 

 
B. MOTORCYCLE VIOLATION DETECTION (MCVD) 

MODELS 

Three YOLO-based MCVD models were trained to 

investigate the effects of model size and architecture and 

to identify the best-performing model. Their performance 

was also compared with the CNN-MTL baseline (CNN-

based Multi-Task Learning for helmet detection) 

proposed by Lin et al. [4], as shown in Table 2. 

Consolidating the original 36 classes into 7 core 

violation classes significantly improved detection 

performance. YOLOv11n trained on 7 classes 

achieved an mAP@50 of 0.6584, nearly doubling 

YOLOv8n’s 0.3514 trained on all 36 classes. This 

reduction in classes helped reduce label noise and class 

imbalance, thereby boosting accuracy and model focus. 

Notably, even with the same 36 classes, YOLOv8n 

outperformed the CNN-MTL baseline (F1 score 0.70 vs. 

0.673), likely due to the more efficient and advanced 

YOLO architecture. YOLOv11m further improved 

performance, reaching an mAP@50 of 0.7127 and a 

weighted F1 score of 0.77, demonstrating the combined 

benefits of class consolidation and targeted minority-

class augmentation in mitigating class imbalance and 

improving detection robustness. 

For further analysis, the consolidated classes were 

grouped into Non-Violation (DHelmet, 

DHelmetP1Helmet) and Violation (DNoHelmet, 

DNoHelmetP1NoHelmet, DHelmetP1NoHelmet, 

DNoHelmetP1-Helmet, MoreThanTwoRider) categories, 

yielding the weighted average results shown in Table 3. 

These results further illustrate the effectiveness of the 

proposed imbalance mitigation strategies, as minority 

violation classes benefit from improved recall without 

sacrificing precision on dominant non-violation 

categories. 

The models show higher precision, recall, and F1-

scores for compliant rider classes, effectively reducing 

false positives and improving the classification of non-

violators. Inference speed tests on 1,000 random test 

images indicate that YOLOv11m achieves near real-

time performance at approximately 25 frames per 

second (FPS), comparable to YOLOv11n’s ∼27 FPS, 

maintaining efficiency despite increased complexity. 

Despite the strong overall performance, several failure 

TABLE 2. Performance comparison of MCVD models, including YOLO variants and CNN-MTL baseline 

MCVD Model Precision Recall mAP@50 mAP@[50–95] Classes Weighted Average F1 Score 

CNN-MTL [4] – – – – 36 0.673 

YOLOv8n 0.3803 0.3889 0.3514 0.3104 36 0.70 

YOLOv11n 0.6505 0.6157 0.6584 0.5915 7 0.72 

YOLOv11m 0.7096 0.6664 0.7127 0.6517 7 0.77 
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cases were observed in challenging real-world 

scenarios. In highly crowded scenes, riders positioned 

very close to each other can be confused, leading to 

false predictions due to inter-instance occlusion. When 

occlusion occurs with nonmotorcycle objects, the model 

generally remains robust and is able to correctly 

distinguish riders. However, for distant motorcycles, 

headwear such as caps or hats is occasionally 

misclassified as helmets due to limited spatial resolution 

and visual similarity. Representative failure cases are 

illustrated in Figure 6. 

 
FIGURE 6. Sample failure cases of the MCVD model. Annotations A and C 

illustrate misclassifications in highly crowded scenes involving closely spaced 

motorcycles, while B shows confusion between a cap and a helmet for distant 

rider instances. 

In summary, label consolidation, enhanced training 

methods, and tailored augmentations enable YOLOv11-

based MCVD models to deliver superior accuracy, 

precision, and practical deployment readiness, 

outperforming earlier state-of-the-art approaches. 
C. LICENSE PLATE DETECTION (LPD) MODELS 

The proposed LPD YOLOv11 models were evaluated on 

the UFPR-ALPR dataset [5], with results summarized in 

Table 4.  

The lightweight YOLOv11n, trained for 50 

epochs, slightly outperformed YOLOv11m, which was 

trained for 20 epochs, likely due to the longer training 

duration. Both models achieved high precision, recall, 

F1 score, and mAP, demonstrating accurate and well-

localized license plate detection. While Laroca et al. [5] 

achieved a marginally higher recall (98.33% vs. 

97.89%), our models provide complete metric 

coverage and near-perfect localization (mAP@0.5 = 

0.9910). The mAP averaged over IoU thresholds 0.5 

to 0.95 (mAP@[0.5–0.95]) reached 0.8485 for 

YOLOv11n and 0.8295 for YOLOv11m, highlighting 

robust detection across varying localization criteria and 

benefiting subsequent LPCD tasks. 

These results were obtained on an augmented 

UFPRALPR dataset, including synthetic regional plates 

(see Section III-B2), which enhanced dataset diversity 

and emphasized the robustness of our models. 

TABLE 3. Weighted average performance for consolidated violation categories 

Category Precision Recall F1 Support 

Non-violating 

Violating 

0.73 

0.59 

0.86 

0.66 

0.79 

0.63 

42,267 

28,174 

 
TABLE 4. Performance of License Plate Detection (LPD) models on UFPR-

ALPR dataset 

LPD Model Precision Recall F1 Score mAP@0.5 

Laroca et al. [5] - 0.9833 - - 

YOLOv11n 0.9729 0.9789 0.9759 0.9910 

YOLOv11m 0.9601 0.9719 0.9660 0.9846 

D. LICENSE PLATE CHARACTER DETECTION (LPCD) 

MODELS 

The performance of the LPCD model was evaluated on 

both synthetic and real datasets under different training 

regimes, including training solely on synthetic data, 

training solely on real data, and the proposed two-stage 

fine-tuning approach. Table 5 summarizes the 

quantitative results. 

Training exclusively on synthetic data (Experiment 1) 

yielded excellent performance on synthetic validation 

images (mAP@0.5 = 0.9948), demonstrating the 

effectiveness of large-scale synthetic samples for 

learning character features. However, evaluation on 

real data (Experiment 2) revealed a notable 

performance drop, with precision decreasing by 7.90% 

and recall by 14.15%, highlighting the limitations of 

domain shift. 

Using only real samples for training (Experiment 3) 

improved precision on real test data (+2.98% compared 

to Experiment 2) but slightly decreased recall (-3.35%), 

indicating that limited real data captures fewer 

variations. The two-stage approach (Experiment 4), 

where a synthetically trained model was fine-tuned on 

just 500 real samples, achieved the best results. 

Precision increased by 4.19% and recall by 9.22% over 

Experiment 2, while mAP@0.5 improved by 4.46% and 

mAP@[0.5–0.95] by 14.20% (0.8813 vs. 0.7717), 

confirming that synthetic pretraining provides 

transferable features, and modest real fine-tuning 

effectively bridges the domain gap. 

The normalized vertical variation method reliably 

distinguished single-line and double-line plates, 

supporting accurate character sequencing. Overall, the 

LPCD pipeline achieved 98.46% reading accuracy on 

TABLE 5. LPCD Model Performance Metrics under different training experiments 

Experiment Training Data Validation / Test Data Precision Recall mAP@0.5 mAP@[0.5–0.95] 

1 Synthetic Only (PS-LPCD 32k) Synthetic Validation (8k) 0.9948 0.9921 0.9948 0.9546 

2 Synthetic Only (PS-LPCD 32k) Real Test (PR-LPCD 150) 0.9162 0.8517 0.9375 0.7717 

3 Real Only (PR-LPCD 500) Real Test (PR-LPCD 150) 0.9435 0.8232 0.8803 0.7515 

4 Synthetic + Fine-tune on Real 
(PSLPCD 32k + PR-LPCD 500) 

Real Test (PR-LPCD 150) 0.9546 0.9302 0.9793 0.8813 

mailto:(mAP@0.5
mailto:mAP@0.5
mailto:(mAP@0.5
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the 650-image PRLPCD dataset. Failures occurred 

mainly under extreme rotations or shearing (Figure 7), 

where, for example, plate C missed the last character “7” 

as it fell below the midline, whereas plates A and B with 

milder distortions were read correctly as LEC-967-17. 

 

FIGURE 7. Examples of license plates demonstrating correct reading and failure 

cases. 

 

Further analysis of the PR-LPCD real test set (150 

plates) revealed that approximately 78% of recognition 

errors originated from the small-character regions 

inherent to Punjab license plate designs. These regions 

are particularly sensitive to adverse imaging conditions. 
Typical failure cases include environmental 

degradation (LP_0019), where dust caused confusions 
such as ‘5’→‘S’ and ‘0’→‘U’; geometric distortion 
(LP_0332 and LP_0341) due to extreme viewing angles 
combined with low-resolution 

small characters; physical wear (LP_0345), where 

faded printing reduced character contrast; and low-light 

conditions (LP_0401 and LP_0589), leading to 

misclassification among visually similar digits. These 

representative failures are illustrated in Figure 8. 

The predominance of small-character-related errors 

suggests that robustness could be further improved 

through targeted synthetic augmentations (dust, blur, 

perspective warping) and enhanced multi-scale feature 

extraction. 

Comparative evaluation on the 150-image PR-LPCD 

real test set further demonstrates the effectiveness of 

the proposed approach compared with EasyOCR [38] 

and PaddleOCR [39], the latter being based on a PP-

OCR framework with a CRNN-style text recognition 

architecture, as shown in Table 6. 

The proposed LPCD model consistently outperforms 

both general-purpose OCR baselines across all 

evaluation metrics. Compared to EasyOCR, character-

level accuracy improves by 12.60% (from 87.67% to 

98.72%), while fullplate match accuracy increases 

substantially from 33.33% to 90.67%. When compared 

with PaddleOCR, which demonstrates stronger 

character recognition performance (95.84%), the 

proposed method still achieves higher character-level 

accuracy and nearly doubles the full-plate match 

accuracy (49.33% to 90.67%). 

 

 
 

 
FIGURE 8. Representative failure cases from the PR-LPCD test set, 

highlighting typical character recognition errors. Yellow arrows indicate 

incorrectly predicted characters. 

 

 
 

In addition to accuracy gains, the LPCD model 
demonstrates superior computational efficiency relative 
to EasyOCR. Total inference time on the test set is 
reduced by approximately 2.63× (from 53.04 s to 20.13 
s), with average per-plate latency decreasing from 
0.0816 s to 0.0310 s. These results demonstrate that 
task-specific pretraining on synthetic license plate data, 
combined with the proposed double-line classification 
heuristic, yields substantial improvements in recognition 
accuracy while maintaining real-time applicability in 
practical deployment scenarios. 
E. END-TO-END PIPELINE INFERENCE 

Two pipeline configurations integrating MCVD, LPD, 

and LPCD were evaluated on an NVIDIA RTX 2060 

GPU: 

• NNN: Nano variants for all models 

• MMN: Medium variants for MCVD and LPD, Nano for 

LPCD 

Each configuration was executed 5,000 times across 20 
test images to estimate baseline inference speed without 
additional preprocessing. The NNN configuration 
achieved ∼19 FPS, demonstrating real-time capability, 

while the MMN configuration achieved ∼15 FPS, 
reflecting a trade-off between speed and accuracy. 

To evaluate real-world performance, we applied the 

proposed sequential pipeline (see Section III-A) to 

five traffic surveillance videos from Lahore, Pakistan. 

These videos are available in our GitHub repository 

(https://github.com/mhdatheek136/P-LPCD). The results 

are summarized in Table 7. 

 

 

 

TABLE 6. LPCD vs. OCR Baselines Performance Comparison 

Method Character-level Accuracy Full-Plate Match Accuracy 

EasyOCR 0.8767 0.3333 

PaddleOCR 0.9584 0.4933 

LPCD Model 0.9872 0.9067 
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TABLE 7. End-to-end pipeline inference results on traffic surveillance 
videos 

Video Pipeline FPS Motorcycles Detected Crowdedness 

hd1 8.69 1596 1.93 

hd2 8.11 3147 1.78 

hd3 6.97 4181 2.78 

hd4 9.17 1633 1.22 

hd5 6.89 4725 2.67 

The results show a strong dependency between 
crowdedness (average motorcycles per frame) and 
inference speed. With approximately one motorcycle per 
frame (e.g., Video hd4, crowdedness = 1.22), the 
pipeline maintained ∼9 FPS. When crowdedness 
exceeded two motorcycles per frame (e.g., Videos hd3 
and hd5), throughput dropped to ∼7 FPS, revealing a 
near-linear decline in performance as object density 
increased. 

Extrapolation suggests that under conditions of exactly 
one motorcycle per frame, the pipeline would sustain 
approximately 9.5 FPS. In contrast, at ∼3 motorcycles 
per frame, throughput decreases by nearly 25–30%. 
This performance– density trade-off highlights the 
importance of optimizing inference strategies for 
deployment in dense urban environments. 

V. CONCLUSION AND FUTURE WORK 

The paper introduces a full YOLOv11-based 

motorcycle traffic violation detection pipeline, in 

particular, dealing with multi-rider detection, helmet-

usage detection, and automatic license plate recognition 

(ALPR). The system is designed to suit Punjab, 

Pakistan, where motorcycles are a major cause of road 

deaths, and the levels of helmet usage among 

motorcycles are very low. 

Key contributions of this study include the 

consolidation of classes for the MCVD model, achieving 

mAP@50 scores of 0.66 with YOLOv11n and 0.71 with 

YOLOv11m, as well as strong license plate detection 

performance with mAP@50 values approaching 0.99. 

The proposed PS-LPCD synthetic dataset, fine-tuned 

with the PR-LPCD real-world dataset, achieved 0.98 

accuracy on real test sets. Both datasets (PSLPCD and 

PR-LPCD) are publicly available to support future 

research and to provide a reproducible procedure for 

creating region-specific license plate datasets, which is 

particularly useful in scenarios where real-world data is 

limited. Moreover, the normalized vertical variation 

technique that was proposed to differentiate between 

single-line and double-line plates is a lightweight 

alternative to the traditional deep learning methods. To 

provide a powerful video-based analysis, the BoT-SORT 

tracker was added, and the presented sequential 

pipeline could maintain around 9.5 FPS when it was 

applied to the scenes with one motorcycle per frame. 

Several challenges were mitigated using task-specific 

augmentations, particularly the lack of near-camera 

close-up views in CCTV footage, which results in small 

and partially occluded license plates, along with varied 

camera perspectives and limited training data for multi-

passenger cases. However, some limitations remain, 

such as lower efficiency when processing full-resolution 

images, potential identity mismatches in congested 

traffic, reliance on continuously updated synthetic 

datasets to accommodate evolving license plate 

formats, and difficulty in detecting small character 

regions on Punjab license plates under extreme 

conditions. 

The following directions are suggested for future 
research: 

(i) the use of regions of interest (ROIs) and rider-

passenger relations modeling to enhance efficiency; (ii) 

the separation of nearby riders by the use of 

segmentation or pose estimation; (iii) the use of 

lightweight language models to refine the predictions of 

character sequences in the license plates;(iv) Controlled 

ablation studies to assess the impact of synthetic close-

up augmentation on MCVD performance and the 

influence of synthetic data volume on LPCD accuracy; 

(v) parallelization of the ALPR process to enhance 

inference speed in a real-world application; and (vi) 

Developing specialized detection strategies for small 

character regions, particularly on Punjab license plates, 

to improve robustness under challenging conditions. 

These enhancements are meant to improve the strength, 

accuracy, and scalability of the proposed system to be 

used in large-scale traffic monitoring and enforcement 

applications. 
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APPENDIX A CLASS DISTRIBUTION BEFORE AND AFTER 

CONSOLIDATION OF THE HELMET DATASET 

This appendix shows the HELMET dataset’s class 
distribution before and after consolidation. Initially 
comprising 36 fine-grained classes (Figure 9), the 
dataset was merged and augmented into 7 broader 
categories (Figure 10) to reduce class imbalance. 

http://www.sciencedirect.com/science/article/pii/S0001457519308401
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FIGURE 9. Class distribution of the HELMET dataset before consolidation (36 

classes). 

 

 
FIGURE 10. Class distribution of the HELMET dataset after consolidation and 

augmentation (7 classes). 

 

APPENDIX B TRAINING AND VALIDATION CURVES 

This appendix provides the full training dynamics for all 

YOLOv11 models used in MCVD, LPD, and LPCD 

experiments. Each figure shows training and validation 

loss curves (box, cls, dfl) along with validation mAP, 

precision, and recall over epochs. 

 
 

FIGURE 11. Training and validation curves for MCVD (YOLOv11n). 

 
FIGURE 12. Training and validation curves for MCVD (YOLOv11m). 

 
FIGURE 13. Training and validation curves for LPD (YOLOv11n). 

 

 
FIGURE 14. Training and validation curves for LPD (YOLOv11m). 

 

 
FIGURE 15. Training and validation curves for LPCD (YOLOv11n). 


