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ABSTRACT

We present a region-aware, end-to-end motorcycle violation detection pipeline tailored to traffic conditions in
Punjab, Pakistan, which integrates three YOLOv11-based components into a unified framework: motorcycle
violation detection (MCVD) for helmet compliance and multi-rider analysis, license plate detection (LPD), and
license plate character detection (LPCD). The system integrates lightweight object detection, BoT-SORT-based
tracking, and character-level recognition, supported by a synthetic-toreal adaptation strategy that combines
large-scale synthetic data with limited real samples. Two specific datasets are published, a 40,000-sample
synthetic Punjab license plate dataset (PS-LPCD) and a 650-sample real-world dataset (PR-LPCD), which are
publicly released in order to encourage research development and adaptation to the region. Class consolidation
enhanced MCVD performance (weighted average F1 score: 0.77) and the LPD model performed at mAPsy =
0.99. Two-stage fine-tuning on synthetic and real samples allowed LPCD to reach a character accuracy of =
98% and a full-plate recognition rate of = 90.7%, both surpassing EasyOCR and PaddleOCR, while also
achieving lower per-plate latency. With a single motorcycle per frame, the sequential pipeline maintains a
throughput of =~ 9.5 FPS; the throughput reduces in scenes where there are many motorcycles. These findings
indicate that synthetic pretraining, together with a small real fine-tuning, can be used to obtain a powerful, scalable,
and region aware automatic license plate recognition (ALPR) system, which provides a reproducible method for
detecting traffic violations across a variety of license-plate formats.

INDEX TERMS ALPR, Helmet compliance, License plate recognition, Motorcycle violation detection,

Multi-rider counting, Punjab, Synthetic dataset, YOLOv11

I. INTRODUCTION

Motorcycle-related traffic violations are a major
contributor to road injuries and fatalities worldwide. The
World Health Organization (WHO) reports that
motorcyclists account for 21% of all road traffic deaths
[1]. In Pakistan, motorcycles are a dominant mode of
transport and are disproportionately represented in
crash statistics [2], [3], underscoring the need for
effective, region-aware monitoring and enforcement
systems.

Although the previous literature has already generated
precise approaches to individual tasks such as helmet
detection [4], multi-rider counting [4], and automatic
license plate recognition (ALPR) [5], most systems
address these sub-tasks in isolation. Moreover, reliance
on generic datasets and off-the-shelf OCR engines (e.g.,
EasyOCR, Tesseract) limits robustness in regions where
license plate formats and scripts vary. This constrains
both applicability and reproducibility in real-world
deployments.

To fill these gaps, we propose an end-to-end
motorcycle violation detection pipeline based on
YOLOv1l. We emphasize that this work does not
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introduce new detection architectures or learning
algorithms. Instead, the novelty lies in a systems-level
integration of existing state-of-the-art components,
combined with region-specific dataset design, synthetic-
to-real adaptation, and deployment-oriented evaluation.
The system integrates three modules: MCVD
(Motorcycle Violation Detection) for helmet-use and
multi-rider detection, LPD (License Plate Detection) for
plate localization, and LPCD (License Plate Character
Detection) for character recognition. Together, these
components form a practical, reproducible, and region-
aware motorcycle violation detection pipeline.
OUR MAIN CONTRIBUTIONS ARE AS FOLLOWS:

- A unified, end-to-end YOLOvll-based pipeline

integrating helmet detection, rider counting, and

ALPR through system-level design.

- Two new Punjab-specific license plate character

detection datasets (synthetic and real) released to

support  region-aware  ALPR research and

reproducibility.

- A lightweight character-level detection approach

that improves ALPR robustness compared to off-the-

shelf OCR engines.

- Models trained and evaluated on augmented public
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datasets to ensure both reproducibility and regional
applicability.

Il. RELATED WORK

Initially, the detection of helmet-use was based on
handcrafted features and classical classifiers. As an
example, SVMs were used on the histograms of head
regions with background subtraction and projection
profiling [6], moving blob extraction with K-Nearest
Neighbor classification [7], and combined LBP, HOG,
and Hough descriptors, achieving an accuracy of
94.23% [8]. These methods were generally sensitive to
lighting, occlusion, and crowding.

Deep learning has enhanced its strength and enabled
joint tasks. CNN-based classifiers, for example,
achieved high accuracy (96.6%) and Fi-score (94.6%)
[9]. Various other pipelines, including YOLO-based and
alternative approaches, have also been applied for
helmet detection and multi-rider identification [4], [10]-
[15]. Nevertheless, although the above-mentioned
methods work well in their intended applications, they
are typically not integrated with the ALPR systems,
which restricts their use in end-to-end motorcycle
violation detection pipelines.

In the case of Pakistan, the research on the topic has
focused on individual tasks and not on comprehensive
end-to-end motorcycle violation detection. Deep learning
models have been successful in identifying the location of
the helmet on a surveillance video with high accuracy
[16], [17], while ALPR systems have focused on license
plate localization, character segmentation, and OCR
[18], [19]. Motorcycle-based end-to-end pipelines
involving the detection of helmet violations, multi-rider,
and region-specific license plate recognition are still
uncommon. This gap is addressed in our work, where a
unified framework is proposed, which is specific to
Punjab, Pakistan.

Several works outside Pakistan have integrated helmet
detection with ALPR in end-to-end pipelines. In some
cases, evaluation relied on proprietary datasets or
generic OCR systems, and regional plate variations were
not always addressed [20]-[24].

Synthetic data has emerged as a viable solution to the
scarcity and privacy issues of license plate datasets.
Template-based methods [25], rendering pipelines [26],
and diffusion models [27] have shown measurable gains
in recognition accuracy. Based on such methods, we
generate a template-based synthetic dataset of
character-level annotated license plates specifically for
the Punjab, Pakistan region, complemented with
manually labeled real images for evaluation. These
findings, along with benchmarking studies [28],
demonstrate the viability of synthetic plate generation as
a reliable supplement to real data.

Ill. METHODOLOGY

A. SYSTEM OVERVIEW
The suggested end
Detection system will

to end Motorcycle Violation
be used to monitor helmet
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compliance, multi riders, and license plate recognition.
The pipeline will be composed of motorcycle detection,
tracking, license plate detection, character recognition,
and violation classification as illustrated in Figure 1.

The detection of motorcycles was conducted with the
help of the YOLOv11l model that was trained on the
COCO dataset [29]. To optimize efficiency, the system
first employs lightweight detection and BoT-SORT
tracking [30] to identify candidate violation frames where
motorcycles and license plates are both visible and
potentially readable. Only these frames are then
processed with the heavier MCVD YOLOv11im model,
ensuring a balance between accuracy and
computational cost. This design prevents violations from
being logged on unreadable plates, which is essential
for reliable automated enforcement.

B. DATASETS AND PREPROCESSING

1) Motorcycle Violation Dataset (HELMET)

The HELMET dataset [4] is a widely used benchmark
for helmet-use and multi-rider detection and was
adopted for training the MCVD model. It comprises
91,000 annotated frames with 283,377 labeled object
instances spanning 36 fine-grained classes. As is typical
of real-world traffic data, this detailed class structure
introduces a substantial class imbalance, with several
safety-critical violations occurring far less frequently
than compliant riding behaviors.

To address this imbalance, two complementary
strategies were employed. First, class consolidation was
performed to simplify the label space and better reflect
traffic enforcement practices. The front-child passenger
(PO) class was removed, and all cases involving three or
more  riders were grouped into a single
MoreThanTwoRider category, since any rider count
exceeding two constitutes a violation regardless of
helmet usage. Second, a targeted sampling approach
was applied during training, where horizontal flipping
augmentation was restricted to underrepresented

classes (those with fewer than 20,000 samples). This
selectively increases the representation of minority
classes without distorting the natural distribution of
dominant categories.

steptl
- motorcycle detection
and tracking

stepl2 ",
LPDandLPCD

step 03
expand and MCVD
(only if LP readablé),

GTB-4162
extreated frame from a video violation detected
FIGURE 1. Pipeline of the proposed End-to-End Motorcycle Violation Detection
system, including motorcycle detection, tracking, license plate recognition, and

violation classification.

Following consolidation and augmentation, the dataset
contained 318,131 annotated instances across seven
violation-relevant classes. The class distributions before
and after consolidation are provided in Appendix A.
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The dataset was divided into 70% for training, 10% for
validation, and 20% for testing. Since the original
dataset consists primarily of CCTV footage in which
motorcycles often appear at a distance, near-camera
close-up views of riders and helmets are
underrepresented. To address this limitation and improve
robustness to real-world scale variations, we applied a
two-step augmentation strategy:

1) Close-up cropping: Every 10th frame containing
a motorcycle was cropped with a padding of 0.1 (as a
fraction of the bounding-box size) to synthetically
generate near-camera views while preserving
annotation coordinates.

2) Super-resolution enhancement: The resulting
low-resolution close-up crops were enhanced using
RealESRGAN [31] to recover fine-grained details and
improve object detectability.

In addition, mosaic blending was applied to simulate
dense traffic conditions and improve robustness to
occlusion and scale variation.

2) License Plate Detection Dataset (UFPR-ALPR)

In the case of license plate detection, we resorted to the
UFPR-ALPR dataset that consists of 4,500 annotated
images that represent various types of vehicles [5].
Each annotation included a license-plate bounding box
and metadata (vehicle type, camera type, lighting
conditions). We focused on plates that are visible on
motorcycles and on vehicle types that are relevant for
LPD.

To improve regional relevance for Punjab, Pakistan,
we generated synthetic Punjab-style license plates and
replaced the original plates in the images while
preserving plate aspect ratios (single-line vs. double-
line), as shown in Figure 3. This augmentation doubled
the dataset to 9,000 images. Following the original
dataset recommendations, the split was 40% training
(3,600 images), 40% validation (3,600 images), and 20%
test (1,800 images) [5].

Training augmentations for the LPD model included
mosaic blending, shear, perspective deformation, and
limited horizontal flipping. This set of augmentations
simulates viewpoint variation and minor geometric
distortions while preserving plate legibility.
3) License Plate Character Dataset (PS-LPCD and
PR-LPCD)
To train a robust character-level detector, we created the
Punjab Synthetic License Plate Character Dataset (PS-
LPCD) and a complementary real-world dataset, the
Punjab Real License Plate Character Dataset (PR-
LPCD). PS-LPCD contains 40,000 synthetic images
generated across four Punjab plate templates, while PR-
LPCD comprises 650 annotated crops extracted from the
PK-Number-Plates-V3 collection [32]. After filtering for
Punjab templates, 500 samples were reserved for fine-
tuning and 150 for final testing. PSLPCD was split into
80% for training and 20% for validation. Sample
synthetic examples are shown in Figure 4.

Both datasets are freely available for research
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purposes as part of the Punjab Pakistan Synthetic and

Real License Plate Character Datasets (P-LPCD),

available at Zenodo

(https://doi.org/10.5281/zen0d0.17182320) [33].

PS-LPCD contains 40,000 synthetic images equally

divided among four Punjab plate templates (front/back x
old/new; 10,000 images per template). We annotated 37
classes: digits 0-9, uppercase letters A—Z, and a special
class “PUNJAB” used to detect decorative or regional
markers and to filter irrelevant glyphs. Synthetic images
were randomized with the following augmentations to
emulate real capture artifacts:

- Spatial transforms applied with probability 0.7:

translation +10 pixels, shear +15°, rotation +15°.

- Perspective warp (small magnitude) to simulate

viewpoint changes.

- Photometric and environmental noise: dirt, dust,

Gaussian noise, and blur.

- Motion blur applied with probability 0.5; kernel size
n chosen randomly from odd integers in [1, 29].
The discrete motion-blur kernel K is defined as

1

—, ifi=[n/2] (horizontal blur row),
n
o=01
Kig = —, ifj=[n/2] (vertical blur column), M
n
0, otherwise.

\,

FIGURE 2. Two-stage super-resolution augmentation process. The first stage
generates synthetic close-up views through cropping, and the second stage
applies Real-ESRGAN to enhance visual details for improved detection
performance.

Original Image Augmented Image

FIGURE 3. Synthetic replacement of license plates to adapt the dataset to
regional characteristics.

This kernel produces a uniform linear blur across the
central row (horizontal) or column (vertical), modeling
motion along the principal axes.

Volume 03, Issue 2, 2025



RHFNOSOORPK Y490

FIGURE 4. Sample synthetic license plates from PS-LPCD.

C. MODEL ARCHITECTURE AND TRAINING

The suggested system utilizes the models based on the
YOLOv1l to perform three main tasks, namely,
Motorcycle Violation Detection (MCVD), License Plate
Detection (LPD), and License Plate Character Detection
(LPCD). Two model versions were used: YOLOv11n, a
small model with real time inference, and YOLOv1lm, a
large model that is designed to achieve the highest
accuracy possible at the cost of computational
performance [34].

All models were initialized with weights pretrained on
the COCO dataset [35], a large-scale benchmark
dataset. Pretraining provides transferable and
generalized feature representations that improve
performance across various vision tasks [36]. Task-
specific data preprocessing and augmentation
strategies were then applied to enhance robustness
under challenging traffic conditions, including occlusion,
motion blur, and varied viewpoints. For example, MCVD
training incorporated moderate mosaic blending to
improve detection in dense scenes, while LPCD training
disabled mosaic augmentation and horizontal flips to
preserve character orientation. The LPD training used a
mixed augmentation, which consisted of mosaic
blending, shear, perspective deformation, and restricted
flips to preserve the geometry of the license plates. In
addition to these custom settings, all models utilized the
default augmentation pipeline provided in the YOLOv11
documentation [29].

The training was done on a 64-bit system with an
NVIDIA RTX 2060 GPU (VRAM: 6GB) and an AMD
Ryzen 7 4800H CPU (with 8 cores and 16 threads),
along with 40 GB of RAM, and operated under the
Windows operating system. Hyperparameters were
tuned to balance accuracy and inference efficiency. In
particular, the MCVD model was trained using the SGD
optimizer with momentum, as the HELMET dataset is
large and SGD is known to offer better generalization on
large datasets. In contrast, the LPD and LPCD models
were trained using the Adam optimizer, since their
datasets are medium or small in size, where adaptive
methods such as Adam converge faster [37]. The overall
training configuration is summarized in Table 1.

TABLE 1. Training configurations for MCVD, LPD, and LPCD models

Model Epochs Batch Size Optimizer
MCVD (YOLOv11n) 20 16 SGD
MCVD (YOLOv11m) 15 8 SGD
LPD (YOLOv11n) 50 16 Adam
LPD (YOLOv11im) 20 8 Adam
LPCD (YOLOv11n) 20 16 Adam

All models were trained with an image size of 640 x 640.
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Complete training and validation curves, including
loss (box, cls, dfl), mAP, precision, and recall for all
YOLOv11l models, are provided in Appendix B for
reference and reproducibility.

In the case of LPCD, domain adaptation was
performed through a two-step fine-tuning process on the
Punjab Real License Plate Character Dataset (PR-
LPCD) following the initial training, as shown in Table 1.
In Stage One, the first eight layers were frozen, and the
model was trained for 10 epochs with a learning rate of
1 x 1075 and a batch size of 8. In Stage Two, only the
first four layers remained frozen, and training continued
for another 10 epochs with a reduced learning rate of 1
x 1076, This gradual unfreezing approach allowed the
model to fit well to real-world data and alleviate
overfitting while retaining the generalizable
characteristics acquired in synthetic training.

D. LICENSE PLATE CLASSIFICATION

The LPCD pipeline includes a license plate layout
classification step in order to allow the correct
sequencing of the detected characters, separating
single-line and double-line plates. This difference is
essential, as the position of the characters varies
dramatically across layouts.

The classification is based on a normalized vertical
variation measure that is calculated using the bounding
boxes of the identified characters. Let y; denote the
vertical center of the i character, and h; its bounding
box height. The metric is defined as:

1w~ _
o, N 21=1 (v — 9)?
Normalized Variation = —% =2Y-*_

o — )

v L= hi

where oy represents the standard deviation of the

vertical centers, un the mean character height, and N
the total number of detected characters.

Plates where the normalized variation was more than
0.45 were defined as double-line because the
characters were more vertically spread. Values below
this threshold indicated single-line plates. The threshold
was chosen empirically in steps of 0.05 by comparing
the accuracy of classification on the PR-LPCD data.

After classification, single-line plates were read
sequentially, whereas double-line plates were parsed
line by line. For double-line plates, a vertical midline,
computed as the average of all vertical points, separates
the two lines, which are read independently. Additional
heuristics were incorporated to improve robustness,
such as identifying the smaller-sized final two digits of
the registration year that commonly appear on Punjab
single-line plates.

Figure 5 illustrates the process, showing bounding box
distributions for singleand double-line plates. A vertical
yellow midline separates the two lines in double-line
plates, while red dots mark each character’s center, and
dotted red lines indicate the spread from the midline.
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FIGURE 5. Normalized Vertical Variations for Single-Line and Double-Line
License Plates. Red dots indicate character centers, dotted red lines show the
vertical spread, and the yellow midline separates the two lines in double-line
plates.

IV. RESULTS AND DISCUSSION

A. EVALUATION METRICS

The performance of the proposed MCVD system was
evaluated using metrics that reflect both detection
accuracy and computational efficiency. For object
detection, the primary metric is mean Average Precision
at an loU threshold of 0.5 (MAP@0.5), which quantifies
the model’s ability to correctly localize and classify
objects. Formally, for C classes and AP. representing
the average precision for class c:

(8}
1
AP@0.5 = — S AP, 3
mAP@ G; 3)

To provide a stricter assessment of detection
robustness, mAP averaged over loU thresholds from 0.5
to 0.95 in 0.05 increments (MAP@][0.5:0.95]) is
computed as:

1 0.95
mAP@[0.5:0.95] = - t:z();.j mAP@¢ (4)

Given the residual imbalance across violation
categories, the weighted F1-score was used as the
primary evaluation metric for MCVD to ensure fair
performance assessment across both frequent and rare
classes. This is defined as:

c

Flweighted = ch Fly, w.= o
e=1 Z‘l:l i

where n. denotes the number of true samples in class c
and F 1. is the F1-score for that class.

In addition, standard evaluation metrics such as
accuracy, precision, recall, and F1-score are computed
to provide additional insights into the system’s
performance. These are defined as:

TP

Te

(5)

Precision = ————— 6
recision TP+ FP (6)
TP
Recall = TPTFN (7

2 Precision - Recall

= Precision + Recall ®

where TP , FP , FN , and TN represent true
positives, false positives, false negatives, and true

negatives, respectively.

To assess computational efficiency, inference speed
was measured in frames per second (FPS). Higher FPS
values indicate faster processing, which is crucial for
real-time traffic monitoring applications.

B. MOTORCYCLE VIOLATION DETECTION (MCVD)
MODELS

Three YOLO-based MCVD models were trained to
investigate the effects of model size and architecture and
to identify the best-performing model. Their performance
was also compared with the CNN-MTL baseline (CNN-
based Multi-Task Learning for helmet detection)
proposed by Lin et al. [4], as shown in Table 2.

Consolidating the original 36 classes into 7 core
violation classes significantly improved detection
performance. YOLOvlln trained on 7 classes
achieved an mAP@50 of 0.6584, nearly doubling
YOLOv8n's 0.3514 ftrained on all 36 classes. This
reduction in classes helped reduce label noise and class
imbalance, thereby boosting accuracy and model focus.
Notably, even with the same 36 classes, YOLOv8n
outperformed the CNN-MTL baseline (F1 score 0.70 vs.
0.673), likely due to the more efficient and advanced
YOLO architecture. YOLOvllm further improved
performance, reaching an mAP@50 of 0.7127 and a
weighted F1 score of 0.77, demonstrating the combined
benefits of class consolidation and targeted minority-
class augmentation in mitigating class imbalance and
improving detection robustness.

For further analysis, the consolidated classes were

grouped into Non-Violation (DHelmet,
DHelmetP1Helmet) and  Violation (DNoHelmet,
DNoHelmetP1NoHelmet, DHelmetP1NoHelmet,

DNoHelmetP1-Helmet, MoreThanTwoRider) categories,
yielding the weighted average results shown in Table 3.

These results further illustrate the effectiveness of the
proposed imbalance mitigation strategies, as minority
violation classes benefit from improved recall without
sacrificing  precision on dominant non-violation
categories.

The models show higher precision, recall, and F1-
scores for compliant rider classes, effectively reducing
false positives and improving the classification of non-
violators. Inference speed tests on 1,000 random test
images indicate that YOLOv1lm achieves near real-
time performance at approximately 25 frames per
second (FPS), comparable to YOLOv11n’s ~27 FPS,
maintaining efficiency despite increased complexity.

Despite the strong overall performance, several failure

TABLE 2. Performance comparison of MCVD models, including YOLO variants and CNN-MTL baseline

MCVD Model Precision Recall mMAP@50 mMAP@[50-95] Classes Weighted Average F1 Score
CNN-MTL [4] - - - - 36 0.673
YOLOV8n 0.3803 0.3889 0.3514 0.3104 36 0.70
YOLOv1lln 0.6505 0.6157 0.6584 0.5915 7 0.72
YOLOv1im 0.7096 0.6664 0.7127 0.6517 7 0.77
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cases were observed in challenging real-world
scenarios. In highly crowded scenes, riders positioned
very close to each other can be confused, leading to
false predictions due to inter-instance occlusion. When
occlusion occurs with nonmotorcycle objects, the model
generally remains robust and is able to correctly
distinguish riders. However, for distant motorcycles,
headwear such as caps or hats is occasionally
misclassified as helmets due to limited spatial resolution
and visual similarity. Representative failure cases are
illustrated in Figure 6.

S E —
OHelmetPiNoHelmet 0.50 Ml I y A = —MoreThanTwoRider 0.56

B g “fﬁj

A B Cc
FIGURE 6. Sample failure cases of the MCVD model. Annotations A and C
illustrate misclassifications in highly crowded scenes involving closely spaced
motorcycles, while B shows confusion between a cap and a helmet for distant
rider instances.

In summary, label consolidation, enhanced training
methods, and tailored augmentations enable YOLOv11-
based MCVD models to deliver superior accuracy,
precision, and practical deployment readiness,
outperforming earlier state-of-the-art approaches.

C. LICENSE PLATE DETECTION (LPD) MODELS

The proposed LPD YOLOv11 models were evaluated on
the UFPR-ALPR dataset [5], with results summarized in
Table 4.

The lightweight YOLOv1ln, trained for 50
epochs, slightly outperformed YOLOv11lm, which was
trained for 20 epochs, likely due to the longer training
duration. Both models achieved high precision, recall,
F1 score, and mAP, demonstrating accurate and well-
localized license plate detection. While Laroca et al. [5]
achieved a marginally higher recall (98.33% vs.
97.89%), our models provide complete metric
coverage and near-perfect localization (MAP@0.5 =
0.9910). The mAP averaged over loU thresholds 0.5
to 0.95 (MAP@[0.5-0.95]) reached 0.8485 for
YOLOv11ln and 0.8295 for YOLOv1lm, highlighting
robust detection across varying localization criteria and

benefiting subsequent LPCD tasks.

These results were obtained on an augmented
UFPRALPR dataset, including synthetic regional plates
(see Section 11I-B2), which enhanced dataset diversity
and emphasized the robustness of our models.

TABLE 3. Weighted average performance for consolidated violation categories

Category Precision Recall F1 Support
Non-violating 0.73 0.86 0.79 42,267
Violating 0.59 0.66 0.63 28,174

TABLE 4. Performance of License Plate Detection (LPD) models on UFPR-
ALPR dataset

LPD Model Precision Recall F1 Score| mAP@0.5
Laroca et al. [5] - 0.9833 - -
YOLOv1ln 0.9729 0.9789 0.9759 0.9910
YOLOv1im 0.9601 0.9719 0.9660 0.9846

D. LICENSE PLATE CHARACTER DETECTION (LPCD)
MODELS

The performance of the LPCD model was evaluated on
both synthetic and real datasets under different training
regimes, including training solely on synthetic data,
training solely on real data, and the proposed two-stage
fine-tuning approach. Table 5 summarizes the
quantitative results.

Training exclusively on synthetic data (Experiment 1)
yielded excellent performance on synthetic validation
images (MAP@0.5 = 0.9948), demonstrating the
effectiveness of large-scale synthetic samples for
learning character features. However, evaluation on
real data (Experiment 2) revealed a notable
performance drop, with precision decreasing by 7.90%
and recall by 14.15%, highlighting the limitations of
domain shift.

Using only real samples for training (Experiment 3)
improved precision on real test data (+2.98% compared
to Experiment 2) but slightly decreased recall (-3.35%),
indicating that limited real data captures fewer
variations. The two-stage approach (Experiment 4),
where a synthetically trained model was fine-tuned on
just 500 real samples, achieved the best results.
Precision increased by 4.19% and recall by 9.22% over
Experiment 2, while mAP@0.5 improved by 4.46% and
MmAP@[0.5-0.95] by 14.20% (0.8813 vs. 0.7717),
confirming that synthetic pretraining provides
transferable features, and modest real fine-tuning
effectively bridges the domain gap.

The normalized vertical variation method reliably
distinguished single-line and double-line plates,
supporting accurate character sequencing. Overall, the
LPCD pipeline achieved 98.46% reading accuracy on

TABLE 5. LPCD Model Performance Metrics under different training experiments

Experiment Training Data Validation / Test Data Precision Recall mAP@0.5 mAP@[0.5-0.95]

1 Synthetic Only (PS-LPCD 32k) Synthetic Validation (8k) 0.9948 0.9921 0.9948 0.9546

2 Synthetic Only (PS-LPCD 32k) Real Test (PR-LPCD 150) 0.9162 0.8517 0.9375 0.7717

3 Real Only (PR-LPCD 500) Real Test (PR-LPCD 150) 0.9435 0.8232 0.8803 0.7515

4 Synthetic + Fine-tune on Real Real Test (PR-LPCD 150) 0.9546 0.9302 0.9793 0.8813
(PSLPCD 32k + PR-LPCD 500)
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the 650-image PRLPCD dataset. Failures occurred
mainly under extreme rotations or shearing (Figure 7),
where, for example, plate C missed the last character “7”
as it fell below the midline, whereas plates A and B with

milder distortions were read correctly as LEC-967-17.
A) B) o]

- —

FIGURE 7. Examples of license plates demonstrating correct reading and failure
cases.

Further analysis of the PR-LPCD real test set (150
plates) revealed that approximately 78% of recognition
errors originated from the small-character regions
inherent to Punjab license plate designs. These regions
are particularly sensitive to adverse imaging conditions.

Typical failure cases include environmental
degradation (LP_0019), where dust caused confusions
such as ‘5—‘S’ and ‘0'—‘U’; geometric distortion
(LP_0332 and LP_0341) due to extreme viewing angles
combined with low-resolution

small characters; physical wear (LP_0345), where
faded printing reduced character contrast; and low-light
conditions (LP_0401 and LP_0589), leading to
misclassification among visually similar digits. These
representative failures are illustrated in Figure 8.

The predominance of small-character-related errors
suggests that robustness could be further improved
through targeted synthetic augmentations (dust, blur,
perspective warping) and enhanced multi-scale feature
extraction.

Comparative evaluation on the 150-image PR-LPCD
real test set further demonstrates the effectiveness of
the proposed approach compared with EasyOCR [38]
and PaddleOCR [39], the latter being based on a PP-
OCR framework with a CRNN-style text recognition
architecture, as shown in Table 6.

The proposed LPCD model consistently outperforms
both general-purpose OCR baselines across all
evaluation metrics. Compared to EasyOCR, character-
level accuracy improves by 12.60% (from 87.67% to
98.72%), while fullplate match accuracy increases
substantially from 33.33% to 90.67%. When compared
with  PaddleOCR, which demonstrates stronger
character recognition performance (95.84%), the
proposed method still achieves higher character-level
accuracy and nearly doubles the full-plate match
accuracy (49.33% to 90.67%).
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Plate 69: Ip_0332 — INCORRECT

Plate 5: Ip_0019 — INCORRECT
%
’ N

FIGURE 8. Representative failure cases from the PR-LPCD test set,
highlighting typical character recognition errors. Yellow arrows indicate
incorrectly predicted characters.

TABLE 6. LPCD vs. OCR Baselines Performance Comparison

Method Character-level Accuracy | Full-Plate Match Accuracy
EasyOCR 0.8767 0.3333
PaddleOCR 0.9584 0.4933
LPCD Model 0.9872 0.9067

In addition to accuracy gains, the LPCD model
demonstrates superior computational efficiency relative
to EasyOCR. Total inference time on the test set is
reduced by approximately 2.63x (from 53.04 s to 20.13
s), with average per-plate latency decreasing from
0.0816 s to 0.0310 s. These results demonstrate that
task-specific pretraining on synthetic license plate data,
combined with the proposed double-line classification
heuristic, yields substantial improvements in recognition
accuracy while maintaining real-time applicability in
practical deployment scenarios.

E. END-TO-END PIPELINE INFERENCE

Two pipeline configurations integrating MCVD, LPD,
and LPCD were evaluated on an NVIDIA RTX 2060
GPU:

- NNN: Nano variants for all models
- MMN: Medium variants for MCVD and LPD, Nano for
LPCD

Each configuration was executed 5,000 times across 20
testimages to estimate baseline inference speed without
additional preprocessing. The NNN configuration
achieved ~19 FPS, demonstrating real-time capability,
while the MMN configuration achieved ~15 FPS,
reflecting a trade-off between speed and accuracy.

To evaluate real-world performance, we applied the
proposed sequential pipeline (see Section IlI-A) to
five traffic surveillance videos from Lahore, Pakistan.
These videos are available in our GitHub repository
(https://github.com/mhdatheek136/P-LPCD). The results
are summarized in Table 7.

Volume 03, Issue 2, 2025



/9
L Bl CP JOURNAL OF

ENGINEERING AND TECHNOLOGY

TABLE 7. End-to-end pipeline inference results on traffic surveillance
videos

Video Pipeline FPS Motorcycles Detected Crowdedness
hdl 8.69 1596 1.93
hd2 8.11 3147 1.78
hd3 6.97 4181 2.78
hd4 9.17 1633 122
hd5 6.89 4725 2.67

The results show a strong dependency between
crowdedness (average motorcycles per frame) and
inference speed. With approximately one motorcycle per
frame (e.g., Video hd4, crowdedness = 1.22), the
pipeline maintained ~9 FPS. When crowdedness
exceeded two motorcycles per frame (e.g., Videos hd3
and hdb), throughput dropped to ~7 FPS, revealing a
near-linear decline in performance as object density
increased.

Extrapolation suggests that under conditions of exactly
one motorcycle per frame, the pipeline would sustain
approximately 9.5 FPS. In contrast, at ~3 motorcycles
per frame, throughput decreases by nearly 25-30%.
This performance— density trade-off highlights the
importance of optimizing inference strategies for
deployment in dense urban environments.

V. CONCLUSION AND FUTURE WORK

The paper introduces a full YOLOvll-based
motorcycle traffic violation detection pipeline, in
particular, dealing with multi-rider detection, helmet-
usage detection, and automatic license plate recognition
(ALPR). The system is designed to suit Punjab,
Pakistan, where motorcycles are a major cause of road
deaths, and the levels of helmet usage among
motorcycles are very low.

Key contributions of this study include the
consolidation of classes for the MCVD model, achieving
MAP@50 scores of 0.66 with YOLOv11n and 0.71 with
YOLOv11im, as well as strong license plate detection
performance with mAP@50 values approaching 0.99.
The proposed PS-LPCD synthetic dataset, fine-tuned
with the PR-LPCD real-world dataset, achieved 0.98
accuracy on real test sets. Both datasets (PSLPCD and
PR-LPCD) are publicly available to support future
research and to provide a reproducible procedure for
creating region-specific license plate datasets, which is
particularly useful in scenarios where real-world data is
limited. Moreover, the normalized vertical variation
technique that was proposed to differentiate between
single-line and double-line plates is a lightweight
alternative to the traditional deep learning methods. To
provide a powerful video-based analysis, the BoT-SORT
tracker was added, and the presented sequential
pipeline could maintain around 9.5 FPS when it was
applied to the scenes with one motorcycle per frame.

Several challenges were mitigated using task-specific
augmentations, particularly the lack of near-camera
close-up views in CCTV footage, which results in small
and partially occluded license plates, along with varied
camera perspectives and limited training data for multi-
passenger cases. However, some limitations remain,
such as lower efficiency when processing full-resolution
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images, potential identity mismatches in congested
traffic, reliance on continuously updated synthetic
datasets to accommodate evolving license plate
formats, and difficulty in detecting small character
regions on Punjab license plates under extreme
conditions.

The following directions are suggested for future
research:

(i) the use of regions of interest (ROIs) and rider-
passenger relations modeling to enhance efficiency; (ii)
the separation of nearby riders by the use of
segmentation or pose estimation; (iii) the use of
lightweight language models to refine the predictions of
character sequences in the license plates;(iv) Controlled
ablation studies to assess the impact of synthetic close-
up augmentation on MCVD performance and the
influence of synthetic data volume on LPCD accuracy;
(v) parallelization of the ALPR process to enhance
inference speed in a real-world application; and (vi)
Developing specialized detection strategies for small
character regions, particularly on Punjab license plates,
to improve robustness under challenging conditions.
These enhancements are meant to improve the strength,
accuracy, and scalability of the proposed system to be
used in large-scale traffic monitoring and enforcement
applications.
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APPENDIX A CLASS DISTRIBUTION BEFORE AND AFTER
CONSOLIDATION OF THE HELMET DATASET

This appendix shows the HELMET dataset’'s class
distribution before and after consolidation. Initially
comprising 36 fine-grained classes (Figure 9), the
dataset was merged and augmented into 7 broader
categories (Figure 10) to reduce class imbalance.
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FIGURE 10. Class distribution of the HELMET dataset after consolidation and

augmentation (7 classes).

APPENDIX B TRAINING AND VALIDATION CURVES

This appendix provides the full training dynamics for all
YOLOv11l models used in MCVD, LPD, and LPCD
experiments. Each figure shows training and validation
loss curves (box, cls, dfl) along with validation mAP,

precision, and recall over epochs.
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