
Date available online: 23-07-2025
Vol. 3, Issue 1 (January – June 2025)
This is an open-access article.
DOI: https://doi.org/10.24312/ucp-jeit.03.01.591

41 Volume 03, Issue 1, 2025

RUPT: An Extension to Traditional Compilers in
C++ to Support Programming in Native Language

Muhammad Ishtiaq
1,3*

, Maryam Gulzar
2
, Muhammad Farhat Ullah.

1
1School of Software Technology, Dalian University of Technology, Dalian, Liaoning, China
2Independent Researcher, Dalian, Liaoning, China
3Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province, Dalian 116620, China

* Corresponding Author: Muhammad Ishtiaq (E-mail: ishtiaqrai8@gmail.com).

ABSTRACT
The medium of instruction has a significant impact on effective communication and comprehension. Most literature is in

English, but presenting information in persons´ native language improves comprehension. In computer science, source code

of programming languages is written in the English language, whereas endemic language has its own impact. To address this

gap, this study has rendered a framework, “Roman Urdu Programming Translator” (RUPT), that will be used to translate a

program coded in Roman Urdu or Hindi into a proportionate C++ program. RUPT acts as a layer above the C++ compiler,

allowing programmers to write code using Roman Urdu keywords, which it translates into standard C++ for compilation and

execution. The special set of Roman Urdu keywords includes, e.g., “keyboardSay (ks)” instead of “cin”, “screenKiTaraf (skt)”

instead of “cout”, “klea” instead of “for” etc. RUPT replaces added Roman Urdu and Hindi keywords with equivalent C++

keywords to produce valid C++ code. It is only composed of the lexical analysis phase. State of the art has increased the

understanding and learning rate of novel users towards the field of computer science.

INDEX TERMS C++, Compiler, Lexical Analysis, Native Language, Roman Urdu, RUPT

I. INTRODUCTION

An accelerator is a piece of hardware or software that

has as its primary objective to improve the overall

performance of the computer. A variety of accelerators

are available to aid in improving the efficiency of various

parts of a computer’s operation. Due to their high

performance and energy economy, numerous

specialized Deep Neural Network (DNN) accelerators

have also recently become more and more popular

[1]. They have been implemented in servers, data

centers, and pervasive computing [2], [3]. These

accelerators concentrate on particular customization for

DNN computations. DNNs are typically represented as

computation graphs, where nodes stand for fundamental

operations (like operators, such as convolution,

pooling, and activation), and edges stand for the data

that these operators consume or produce. To

accelerate computation, these operators can be

offloaded to accelerators [1]. Accelerators facilitate

making efficient use of computer resources, but we need

to grease the wheels for human beings and motivate

them to dive into the field of computer science. Learning

the native language is very important, as it has a great

impact on the education of children. It has proved its

unique importance as a key factor in getting awareness

of new developments in studies and success in future

life. The relationship between conscious self-regulation

and executive functions, two groups of regulatory

predictors, and academic performance in the native

language has been discovered by structural equation

modeling [4]. By knowing the importance of native

language in academics, in this paper, work has been

done to provide a platform that will support writing

source code of programming language in native

language. Programming languages use English words

to code. Roman Urdu is the name for writing the Urdu

language in Roman characters [5]. A recently developed

language in South Asia is called Roman Urdu.

Romanized Urdu deviates from the rules of the Urdu

language. However, many internet users utilize this

language to communicate their views and ideas on a

variety of topics [5], [6]. Daud [7] estimates that 300

million people use the Urdu language worldwide.

Additionally, there are roughly 500 million native Hindi

speakers, according to Kunchukuttan et al. [8]. The

majority of them are literate in Roman Urdu. As a result,

we can estimate that there are about 800 million Roman

Urdu speakers [10]. Roman Urdu, which appears in the

last column of Figure 1, is an example of three sentences

that both Urdu and Hindi speakers may understand.

FIGURE 1: Three phrases are compared using several foreign languages

Zain et al. [19] introduced RU-OLD, a hate speech

detection model for Roman Urdu that integrates deep

learning, transfer learning, and hyperparameter

optimization. Their study highlights the linguistic

challenges associated with Roman Urdu, particularly the

need for effective tokenization strategies—aspect also

addressed in the present work. In this context, we

propose RUPT (Roman Urdu Programming Translator),

a platform designed to enable programmers to write

C++ code using Roman Urdu keywords instead of

standard English-based syntax. Specific keywords are

mailto:ishtiaqrai8@gmail.com

42 Volume 03, Issue 1, 2025

targeted in this work, and these keywords are replaced

with some other keywords taken from “Urdu”. These

keywords are written in “English Typeface” i.e., the

keyword “cin” is replaced with “keyBoardSay” whereas

“screenKiTaraf” has taken the place of the “cout”

keyword. Here new libraries will be written that will be

used to translate partially written programs into pure

C++ programs.

The core objective of this study is to reduce the

linguistic barrier for novice programmers by enabling

programming in native languages—specially Roman

Urdu and Hindi—using a custom compiler extension

named RUPT (Roman Urdu Programming Translator).

RUPT serves as a preprocessor layer that translates

Roman Urdu/Hindi code into syntactically valid C++

code, facilitating compilation through standard C++

compilers.

The significance of this problem lies in the widespread

difficulty non-native English speakers face while

learning programming, as most programming languages

rely heavily on English-based syntax and semantics.

This language-centric challenges often leads to

cognitive overload, disengagement and slower learning

curves.

The novelty of the proposed framework lies in its

integration of native-language-inspired lexical tokens

within a structured grammar system (RUPL), use of

Finite State Machines (FSMs) for keyword recognition,

and implementation of a custom tokenizer designed to

handle non-standard script variations found in Roman

Urdu. Key contributions of this work include:

• Designing and formalizing the RUPL grammar
with mappings for Roman Urdu equivalents of
common C++ keywords.

• Implementing a light-weight lexical analyzer that
processes Roman Urdu-based source code and
generates corresponding valid C++ code.

• Developing a fully functional GUI-based editor
that supports writing and compiling programs in
Roman Urdu.

• Conducting technical and opinion-based
evaluations with students to validate ease of
learning and system usability.

The rest of the article is organized in the following

manner: In Section II, relevant work is elaborated. Section

III presents the methodology used for state-of-the-art.

Results and discussion, along with design and

implementation, are covered in Section IV, while the

conclusion is covered in Section V.

II. LITERATURE REVIEW

Over the last few years, several researchers carried out

different studies for code conversion. David Unga et al.

[9] proposed a computer-adaptive translator named the

"University of Queensland Dynamic Binary Translator"

(UQDBT) that followed a backward pass (decoding

executable code) and forward pass (encoding the

decoded executable code after required improvement).

UQDBT converges faster than systems based on

instruction anticipation because edge weight

instrumentation converts frequently executed code to

native code. It was a method that made it possible to

run software on a machine and get acceptable output,

whereas the software was designed for some other

machine.

Tao Lei et al. [11] described a technique for creating

input parsers automatically from English specifications

of input file formats. The English specification was

converted into a specification tree, which was then

converted into a C++ input parser using a Bayesian

generative model to capture pertinent natural language

occurrences. A joint dependency parsing and semantic

role labeling task was used to model the issue. Their

approach is based on two different types of data: the

first is the relationship between the text and the

specification tree, and the second is noisy supervision,

which is measured by how well the resulting C++ parser

reads input examples. A state-of-the-art semantic parser

obtained an F1-score of 66.7% using a dataset of input

format specifications from the ACM (Association for

Computing Machinery) International Collegiate

Programming Contest, while this technique produced an

F1-score of 80.0%.

Furqan et al. [18] released ERUPD, a parallel

English-Roman Urdu corpus of 75,146 sentence pairs,

created via synthetic prompt-engineering and human

validation. This dataset could significantly enhance

token mapping and keyword consistency in state-of-the-

art related work. Besides, Ansarullah et al. [20] achieved

97.98% accuracy in segmenting mixed Roman Urdu and

English text using dictionary based SVM and Bi-LSTM—

highlighting effective strategies for script or code-

switching detection application applicable to lexical

analyzers.

RECCO, a REliable Code COmpiler that can

automatically produce a reliable version of any C/C++

source code, was introduced by A. Benso et al. [12]

The program uses a powerful algorithm for reordering

the code and a flexible technique for variable duplication

to build a trustworthy code that can recognize the

appearance of important data defects. The tool makes

changes that are entirely transparent to the programmer

and have no impact on the targeted program’s original

functionality. In order to keep overhead within the

acceptable ranges, the tool also gives the user the

option of selecting the percentage of duplicated

variables. The approach’s efficacy and the low overhead

that was added to the trustworthy code in terms of both

memory occupancy and execution time were proved by

experimental results.

Ben Gelman et al. [13] linked source code with three

deliverables from 108,568 projects that were

downloaded from GitHub and had at least 10 stars and a

redistributable license. The first set of pairs links

Doxygen-extracted comments with corresponding

snippets of source code in C, C++, Java, and Python.

The second group of pairings links the raw C and C++

source code repositories with the build artifacts that are

43 Volume 03, Issue 1, 2025

produced when the make command is used to create

the code. The last set of pairs links unprocessed C and

C++ source code repositories with probable code flaws,

which are discovered by running the Infer static

analyzer. The code and comment pairs can be utilized

for tasks like comment prediction or code description in

natural language. Reverse engineering and enhancing

intermediate representations of code from decompiled

binaries are two operations that can be accomplished

using the code and build artifact pairs. It is possible to

leverage the code and static analyzer pairs for machine

learning approaches to vulnerability finding.

According to real-world applications and the

drawbacks of existing programming software, Pan

Duotao et al. [14] created the GIEPT, a type of cross-

platform modelling programming software, on the open

source Fedora 12/Linux platform. By utilizing its XML-

based input programming approach and many

programming kinds and scales, GIEPT offers a

universal solution. The GIEPT now incorporates a

number of features, such as the common solver

interface, the unified standard using XML-based

schema, which is used to input model data and

automatically convert it into C++ source code, and the

symbolic algebra system, which is used to produce the

matrix of gradient, Jacobian, Hessian, etc. Since GIEPT

is platform agnostic and open source, programmers are

free to alter its characteristics and expand its

functionality in response to the situation at hand.

Additionally, development and application expenses

have been significantly decreased.

In a C++ implementation of a concordance program

for texts in Old West Norse and Runic Swedish, Lars

Engebretsen [15] discussed some of the author’s

experiences. It was only reasonable to use Unicode to

represent data both inside the program and in external

files because the input to the program employed a

character repertoire that no typical onebyte character

encoding supports. The input and output were

represented in UTF-8, while each character within the

program was represented using C++ "wide characters."

During file I/O, the author created C++ code conversion

aspects that translate data between those two formats.

This allowed him to successfully construct and execute

the concordance application on both Windows XP (using

Visual C++.NET 2003) and Linux (Fedora Core 3 with

gcc 3.4.2). When switching platforms, only a few lines of

code—the ones deciding which code conversion facet to

use—had to be modified in the source code; all other

sections of code stayed the same. Even though the code

conversion facets given by the library had been

updated, the author could still use the standard C++

locale framework for collation and code conversion.

A method for automatically creating documentation

summaries for C++ procedures was suggested by Nahla

J. Abid et al. [16]. A summary template was made using

method stereotypes, one for each individual method

archetype. The primary parts of the approach are then

extracted using static analysis. The generated

documentation summaries are then used to update

each method’s documentation. The strategy may be

applied to various object-oriented programming

languages and is very scalable. These summaries can

aid in maintaining comprehension. Undergraduate

students that participated in the evaluation were the

initial subjects. The findings show that the automated

summaries adequately describe what the approach

accomplishes and contain all necessary details. The

outcomes also suggest that their approach to this

issue—creating unique templates for each stereotype—

is a workable and effective remedy. Despite the fact that

the automated summaries were generally praised by the

participants, some changes are still required, notably for

the controller and collaborator, because they are rather

complex and challenging to effectively summarize.

III. METHODOLOGY

Butt et al. [17] propose a transformer-based model

using m2m100 with masked language modeling to

transliterate between Roman-Urdu and Urdu, achieving

character-level BLEU scores of 96.37 and 97.44. Their

use of transfer learning and rigorous domain adaptation

offers a strong precedent for lexical mapping

approaches in Roman Urdu Programming Translator

(RUPT). RUPT will translate a program containing Urdu

Roman words as an alternative to C++ keywords into a

pure C++ program. It is able to perform lexical analysis

of the program containing a mixture of Urdu Roman

words and C++ keywords according to the definition of

Roman Urdu Programming Language (RUPL).

A. RUPL DEFINITION

Roman Urdu Programming Language (RUPL) contains

the following alphabets as C++:
{A, B, C, D, E, F, G, H, I, J, K,
L, M, N, O, P, Q, R, S, T, U, V,

W, X, Y, Z, a, b, c, d, e, f, g,

h, i, j, k, l, m, n, o, p, q, r,

s, t, u, v, w, x, y, z, 0, 1, 2,
3, 4, 5, 6, 7, 8, 9}

Real numbers can be defined by the following alphabets:

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, +, -, .}

TABLE 1: RUPL Keywords

C++
Keyword

RUPL
Keyword

C++
Keyword

RUPL
Keyword

cin keyboardSay cout screenKiTaraf
if agar else naheTw
for klea switch badlo
case imkan break roko
default pehlySay do karo
exit niklo private niji
public awami protected mehfooz
while jabK return wapis
continue jari string doree

This table presents the mapping between C++ keywords and
their equivalents in the proposed RUPL language.

The alphabets given above have been used to make

grammar for our language, RUPL. Grammar has four

44 Volume 03, Issue 1, 2025

parts given below:

1) N: non-terminal alphabets

2) T: terminal alphabets

3) P: it defines production rules

4) S: it is start symbol belongs to N

Here is an example to define grammar for an identifier:

N = { <id>, <digit>, <letter>}
T = { 1 , 2 , 3 , a , b , c }
P = production rules to be used
1. <id> → <letter>
2. <id> → <id> <letter>
3. <id> → <id> <digit>
4. <digit> → 1
5. <digit> → 2
6. <digit> → 3
7. <letter> → a
8. <letter> → b
9. <letter> → c
S = <id>

B. RUPL KEYWORDS

Besides, a subset of C++ keywords has been selected.

Among these, some keywords will be redefined into the

Roman Urdu language. These Urdu Roman-redefined

keywords will be replaced back into the original C++ by

RUPT. Table 1 shows C++ keywords and their

corresponding special RUPL keywords.
C. RUPL TOKENS

RUPT tokens are the fundamental structures that

obstruct the Roman Urdu Programming Language,

which are developed together to compose a RUPL

program. Every single littlest individual unit in a RUPL

program is known as a RUPL token. A few types of

RUPL tokens given below:

1) Keywords, e.g., string, klea

2) Identifiers, e.g., total, main

3) Strings, e.g., school, university

4) Constants, e.g., 1001, 1136, 1089

5) Operators, e.g., *, -, +, /
6) Special symbols, e.g., { }, ()
D. RUPL TRANSLATION

There are two essential qualities of simulated dialects:

syntax and semantics. Language structure is an

arrangement of standards that must be taken after to

announce a legitimate program, while semantics depicts

consistent conduct of the substantial program. The way

toward contrasting source code and the punctuation of

dialect is finished by the parser, while the code generator

allocates implications to the program. Strategies used to

determine the linguistic structure of any dialect are

grammar, finite state machines, and regular

expressions.

As discussed earlier, RUPL grammar has four parts: N
, T , P , and S. An element from the non-terminal
letter set, N , speaks to a gathering of characters from
the terminal letters in order, T . A non-terminal image is
as often as possible encased in edge sections, <>.
While the guidelines of generation utilize the non-

terminal to portray the structure of the language. Notice
that N is a set, yet S is not. S is one of the components
of set N . The beginning image, alongside the tenets of
creation, P , empowers you to choose whether a series
of terminals is a substantial sentence in the dialect. In
the case of beginning from S, a series of terminals is
created by utilizing the principles of generation; at that
point the string is a legitimate sentence.
1) Grammar for Identifier

Despite the fact that a RUPL identifier can utilize any

capitalized or lowercase letter or digit, the same as C++,

to keep the case little, this punctuation allows just the

letters l, m, and n and the digits 7, 8, and 9. The

principal character must be a letter, and the rest of

the characters, assuming any, can be letters or digits

in any mix. This grammar has three non-terminals,

namely, < id >, < letter >, and
< digit >. The start symbol is < id >, one of the
elements from the set of non-terminals. The rules
of production are of the form: A −−· w, where A is
a non-terminal and w is a string of terminals and
non-terminals. The symbol −−· means “produces”
while the grammar specifies the language by a
process called a derivation. To derive a valid
sentence in the language, begin with the start
symbol and substitute for non-terminals from the
rules of production until you get a string of
terminals. Here is a derivation of the identifier nlm9
from this grammar. The symbol means −−· “derives
in one stage”. Grammar for RUPL identifier is given
below:

N = { <id>, <letter>, <digit>} T = { l , m , n , 7 , 8 , 9

}
P = shows rules of production
1. <id> → <letter>
2. <id> → <id> <letter>
3. <id> → <id> <digit>
4. <digit> → 7
5. <digit> → 8
6. <digit> → 9
7. <letter> → l

8. <letter> → m
9. <letter> → n S = <id>

Besides, each deduction step serves as the generation

administrator upon which substitutions are based. For

example, consider Rule 2:

⟨id⟩ −−· ⟨id⟩⟨letter⟩

This rule is applied to substitute ⟨id⟩ during the derivation
stage. For instance:

⟨id⟩ 9 −−· ⟨id⟩⟨letter⟩ 9

The conclusion of this inference operation corresponds

to performing substitution on a letter in sequence. The

symbol
−−·∗ denotes "derives in zero or more steps". The last
eight inference steps can be summarized as:

⟨id⟩ −−·∗ nlm9

This derivation confirms that nlm9 is a valid identifier, as it

45 Volume 03, Issue 1, 2025

can be generated from the start symbol ⟨id⟩.
2) Finite State Machine (FSM) to Parse Identifier

A 2024 study [21] on Roman Urdu spelling variation

(5˜244 words per variant) emphasizes the prevalence of

orthographic inconsistency—supporting RUPT’s FSM-
based normalization to correctly map variant tokens to
standardized C++ keywords. In Figure 2(a), the

arrangement of states {A, B, C} is given. A is the
beginning state and B is the last state, whereas C is the

reject state. There is progress from A to B on a letter,
from A to C on a digit, from B to B on a letter or a digit,

and from C to C on a letter or a digit. To utilize the FSM,
envision that the information string is composed on a bit
of paper tape. Begin in the beginning state, and output

the characters on the information tape from left to right.
Each time you examine the following character on the

tape, influence a change to another condition of the
limited state machine. Utilize just the change that is
permitted by the curve relating to the character you

have recently checked. Subsequent to filtering all the
info characters, on the off chance that you are in a last

express, the characters are a legitimate identifier. Else
they are most certainly not. Figure 2(b) shows the

same process through a simplified finite state
machine by removing the optional reject state. Table
2 and 3 show transition tables for FSM Identifier and

Identifier through Simplified FSM, respectively.

TABLE 2: Transition Table for Identifier

Current State New State
(Letter)

New State (Digit)

A
B C

B
B C

C
B C

This table defines state transitions when processing identifiers:
a letter leads to one transition, while a digit leads to another,
based on the current state.

TABLE 3: Transition Table for Identifier through Simplified FSM

Current State New State
(Letter)

New State (Digit)

A
B

B
B

–
B

This table shows a simplified finite state machine (FSM)
used to identify valid identifiers. State transitions depend on
whether a letter or digit is encountered.

By considering the following grammar, a few

examples to parse RUPL keywords are represented.

X = { a, b, c, e, f, g, h, I, k, l, n, o, r, s, t, y }

T = { X, _ }

N = { <id>, <letter>, <symbol>} P = Production Rules
<id> → <id> <letter>

<id> → <id> <symbol>

<id> → <letter>

<letter> → X

<symbol> → _ S = <id>

Now, the key word “agar” will be parsed through the

grammar defined above. As it is defined:

S = <id>

= <id><letter> (using Rule 1)

= <id><letter><letter> (using

Rule 1)

= <id><letter><letter><letter>(using Rule 1)

= <letter><letter><letter><letter> (using Rule 3)

= agar

The keyword “agar” has been proved by RUPL

grammar of keywords. Hence, “agar” belongs to RUPL.

Figure 3 shows the FSM for the RUPL keyword “agar”.

The same as the keyword “klea” also being tested. So,

the key word “klea” will be parsed through the grammar

defined above. Parsing of the "klea" keyword is

performed by applying the same rules as applied to

parse "agar" because both keywords have 4 letters.

Figure 4 shows FSM to parse RUPL keyword “klea”.

FIGURE 2: Finite State Machine (FSM) to Parse Identifier

FIGURE 3: FSM to Parse RUPL keyword “agar”

FIGURE 4: FSM to Parse RUPL keyword “klea”

The Algorithm 1 outlines how the RUPT lexical
analyzer processes Roman Urdu keywords, identifieres,
constants, and symbols to generate valid C++ tokens:

46 Volume 03, Issue 1, 2025

IV. RESULTS AND DISCUSSION

The benefit of the iterative model is that it facilitates the

early development of a functional version of the product.

As a result, implementing modifications is less

expensive. This is the reason to follow the iterative

development model for RUPT.

A. REQUIREMENTS

The requirement under which this framework is

presented is to target those audiences facing problems

in understanding the English language. It is known by

everyone that the usage of compilers itself has all the

keywords in the English language. That is the main

reason RUPT is presented. To make the lives of those

people easy by changing specific keywords. As a result,

their programming skills won’t be affected in any way.

Other than that, during the process of the translation,

natural language is also promoted, which results in

better understandings and perceptions about the people

that are doing this.

B. DESIGN

As everyone knows, a translator or compiler requires
some keywords and a list of tokens by which it
recognizes the source code and compares it with the
grammar defined for the programming language and
translates that programming language to another.
Similarly, a list of keywords, presented in Table 1, has
been designed and targeted by RUPT. The user writes

RUPL source code in the RUPT editor and gets the
required output as pure C++ code, and later on this
code is passed to the traditional compiler for further
processing. Figure 5 shows an abstract view of RUPT,
while Figure 6 helps to present a detailed understanding
of the state-of-the art translator.

FIGURE 5: Abstract view of RUPT

FIGURE 6: RUPT Detailed View

C. IMPLEMENTATION

After designing the RUPT, it was implemented into
reality. For this purpose, C++ and C# have been used.
DevCpp and Visual Studio are the main tools that have
been used to implement the design. The RUPT editor
has been developed as a user interface by writing
instructions in C# as a programming language. As a
tool, we have used Visual Studio to implement C#.
Figure 7 shows the RUPT document window having
RUPL source code and a RUPT interface. Source code
to perform the process of converting a sequence of
characters into a sequence of lexical tokens, called
lexical analysis, is written in the C++ programming
language. RUPT gives pure C++ code after performing
lexing or tokenization on RUPL source code. Figure 8
elaborates on the working of the lexical analyzer.

FIGURE 7: RUPT Interface

FIGURE 8: Lexical Analyzer Working

47 Volume 03, Issue 1, 2025

D. PROGRAM USED FOR EVALUATION

To verify the correctness of RUPT’s translation output, a

standard merge sort algorithm was used in Roman Urdu

and then translated into C++ using the framework. The

translated code was compiled and executed using a

traditional C++ compiler. The Algorithm 2 shows the

logic of the merge sort implementation used for

evaluation:

FIGURE 9: Sample View of Technical Servery

E. VERIFICATION

The community targeted to evaluate the state of the art

was novel computer users towards programming,

especially the intermediate students. The assessment

process was based on two types of surveys. 1)

Technical Survey and 2) Opinion Survey. In the

technical survey, analysis was done by calculating the

execution time of several programs, especially the

merge sort program, by different users on many

computers with variant aspects, e.g., CPU: Core,

Frequency, and Generation. First of all, a pure C++

merge sort program was executed as aforesaid and

calculated its execution time in microseconds. After that,

a calculation was performed for the execution time taken

by RUPT to yield a pure C++ program for merge sort

from RUPL-based source code. A little bit of an

increment in overall execution time was observed, but

the understanding and learning rate increased as new

learners found ease towards program scripting. A

sample view of the technical servery is presented in

Figure 9.

The opinion survey was conducted using both hard

copy and digital forms, targeting intermediate-level and

early undergraduate students from multiple educational

institutions. Prior to participation, students were

introduced to the use of RUPT in conjunction with

RUPL for scripting, and its comparison with other

programming languages. They were then asked to

share their perspectives. The survey included students

from both colleges and universities, representing a

diverse academic background. The results based on

responses from different institution types are illustrated

in Figure 10.

In Figure 11, overall results present that 83.40% of

participants appreciated RUPT as a great initiative to

motivate individuals to the field of computer science,

8.30% said that in their views it does not affect them,

while the same percentage remained neutral.

FIGURE 10: Views of Each Institute from Opinion Survey

Cumulative Sentiment Proportions Across All Institutes

FIGURE 11: Overall Views from Opinion Survey

Neutral

Negative

Positive

48 Volume 03, Issue 1, 2025

V. CONCLUSION

This work has proffered a framework, "Roman Urdu
Programming Translator” (RUPT), as an additional layer
to the original C++ compiler that translates a program
coded in Roman Urdu or Hindi, known as "Roman Urdu
Programming Language" (RUPL), into a proportionate
C++ program. In this study, a special set of Roman Urdu
keywords includes, e.g., “keyboardSay (ks)” instead of
“cin”, “screenKiTaraf (skt)” instead of “cout”, “klea”
instead of “for” etc., is focused on. In this work,
additional Urdu and Hindi Roman keywords are added
to the original set of C++ language and replaced by the
C++ equivalent keywords through RUPT to convert it
into a pure C++ program. RUPT is only composed of the
lexical analysis phase. Keywords and tokens are
defined and parsed by following the rules delineated in
RUPL grammar. Evaluation is based on two types of
surveys: 1) The technical survey has observed a minor
increment in overall execution time, but the
understanding and learning rate increased. 2) The
opinion survey has presented that 83.40% of
participants appreciated RUPT as a great initiative to
motivate novel users to the field of computer science,
8.30% said that in their views it does not affect them,
while the same number of participants remained neutral.

ACKNOWLEDGMENT

We would like to express our gratitude to the
anonymous reviewers for their insightful feedback. This
research work is not funded by anyone. Gramatical
corrections are done by using AI at some places.
Besides, authors do not have any conflict of interest.

REFERENCES

[1] J. Li, W. Cao, X. Dong, G. Li, X. Wang, P. Zhao, L. Liu, and

X. Feng, “Compiler assisted Operator Template Library for

DNN Accelerators,” International Journal of Parallel

Programming, 2021, doi: 10.1007/s10766021-00701-6.

[2] N. P. Jouppi et al., “In Datacenter Performance Analysis of a

Tensor Processing Unit,” ISCA ’17, pp. 1–12. Association for

Computing Machinery, New York, NY, USA, 2017, doi:

10.1145/3079856.3080246.

[3] H. Liao, J. Tu, J. Xia, and X. Zhou, “DaVinci A Scalable

Architecture for Neural Network Computing,” 2019 IEEE

Hot Chips 31 Symposium (HCS), pp. 1–44. IEEE Computer

Society, Los Alamitos, CA, USA, 2019, doi:

10.1109/HOTCHIPS.2019.8875654.

[4] V. I. Morosanova, I. N. Bondarenko, T. G. Fomina, and B. B.

Velichkovsky, “Executive Functions and onscious Self-

Regulation as Predictors of Native Language Learning

Success in Russian Middle School Children,” Journal of

Siberian Federal University. Humanities & Social Sciences,

2021, doi: 10.17516/1997-1370-0824.

[5] M. Daud, R. Khan, Mohibullah, and A. Daud, “Roman Urdu

Opinion Mining System (RUOMiS),” Computer Science &

Engineering: An International Journal (CSEIJ), 2015, doi:

10.48550/arXiv.1501.01386.

[6] K. Mehmood, D. Essam, and K. Shafi, “Sentiment Analysis

System for Roman Urdu,” Proceedings of the 2018

Computing Conference, 2018.

[7] A. Daud, W. Khan, and D. Che, “Urdu language processing,

a survey,” Artificial Intelligence Review, An International

Science and Engineering Journal, 2016, doi:

10.1007/s10462-016-9482-x.

[8] A. Kunchukuttan, P. Mehta, and P. Bhattacharyya, “The IIT

Bombay English-Hindi Parallel Corpus,” Proceedings of the

Eleventh International Conference on Language Resources

and Evaluation (LREC 2018), 2018.

[9] D. Ung and C. Cifuentes, “Dynamic binary translation

using runtime feedbacks,” Science of Computer

Programming, 2005, doi: 10.1016/j.scico.2005.10.005.

[10] U. Hayat, A. Saeed, M. H. K. Vardag, M. F. Ullah, and N.

Iqbal, “Roman Urdu Fake Reviews Detection Using Stacked

LSTM Architecture,” SN Computer Science, 2022, doi:

10.1007/s42979-022-01385-6.

[11] T. Lei, F. Long, R. Barzilay, and M. Rinard, “From Natural

Language Specifications to Program Input Parsers,”

Proceedings of the 51st Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers),

2013.

[12] A. Benso, S. Chiusano, P. Prinetto, and L. Tagliaferri, “A

C/C++ sourceto-source compiler for dependable

applications,” Proceeding International Conference on

Dependable Systems and Networks. DSN 2000, 2000, doi:

10.1109/ICDSN.2000.857517.

[13] B. Gelman, B. Obayomi, J. Moore, and D. Slater, “Source

code analysis dataset,” Data in brief, 2019, doi:

10.1016/j.dib.2019.104712.

[14] P. Duotao, H. Mingzhong, and Y. Decheng, “Development of

large scale programming system based on Linux platform,”

2011 Chinese Control and Decision Conference (CCDC),

2011, doi: 10.1109/CCDC.2011.5968310.

[15] L. Engebretsen, “Platform-independent code conversion

within the C++ locale framework,” Software — Practice and

Experience, 2006, doi: 10.1002/spe.734.

[16] N. J. Abid, N. Dragan, M. L. Collard, and J. I. Maletic, “Using

stereotypes in the automatic generation of natural language

summaries for C++ methods,” 2015 IEEE International

Conference on Software Maintenance and Evolution

(ICSME), 2015, doi: 10.1109/ICSM.2015.7332514.

[17] U. Butt, S. Veranasi, and G. Neumann, “Low-Resource

Transliteration for Roman-Urdu and Urdu Using

Transformer-Based Models,” arXiv preprint

arXiv:2503.21530, 2025.

[18] M. Furqan, R. B. Khaja, and R. Habeeb, “ERUPD–English to

Roman Urdu Parallel Dataset,” arXiv preprint

arXiv:2412.17562, 2024.

[19] N. Hussain, A. Qasim, G. Mehak, O. Kolesnikova, A.

Gelbukh, and G. Sidorov, “ORUD-Detect: A Comprehensive

Approach to Offensive Language Detection in Roman Urdu

Using Hybrid Machine Learning– Deep Learning Models

with Embedding Techniques,” Information, vol. 16, no. 2, p.

139, 2025, doi: 10.3390/info16020139.

[20] S. H. Kumhar, M. Kirmani, S. Alshmrany, et al., “Language

Tagging, Annotation and Segmentation of Multilingual

Roman Urdu-English Text,” 2024. [Online]. Available:

https://arxiv.org/abs/ (DOI or publisher not available).

[21] M. A. Soomro, R. N. Memon, A. A. Chandio, M. Leghari,

and M. H. Soomro, “A dataset of Roman Urdu text with

spelling variations for sentence level sentiment analysis,”

Data in Brief, vol. 57, p. 111170, 2024, doi:

10.1016/j.dib.2023.11117

