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ABSTRACT  
The medium of instruction has a significant impact on effective communication and comprehension. Most literature is in 

English, but presenting information in persons´ native language improves comprehension. In computer science, source code 

of programming languages is written in the English language, whereas endemic language has its own impact. To address this 

gap, this study has rendered a framework, “Roman Urdu Programming Translator” (RUPT), that will be used to translate a 

program coded in Roman Urdu or Hindi into a proportionate C++ program. RUPT acts as a layer above the C++ compiler, 

allowing programmers to write code using Roman Urdu keywords, which it translates into standard C++ for compilation and 

execution. The special set of Roman Urdu keywords includes, e.g., “keyboardSay (ks)” instead of “cin”, “screenKiTaraf (skt)” 

instead of “cout”, “klea” instead of “for” etc. RUPT replaces added Roman Urdu and Hindi keywords with equivalent C++ 

keywords to produce valid C++ code. It is only composed of the lexical analysis phase. State of the art has increased the 

understanding and learning rate of novel users towards the field of computer science. 

 
INDEX TERMS C++, Compiler, Lexical Analysis, Native Language, Roman Urdu, RUPT 

I. INTRODUCTION 

An accelerator is a piece of hardware or software that 

has as its primary objective to improve the overall 

performance of the computer. A variety of accelerators 

are available to aid in improving the efficiency of various 

parts of a computer’s operation. Due to their high 

performance and energy economy, numerous 

specialized Deep Neural Network (DNN) accelerators 

have also recently become more and more popular 

[1]. They have been implemented in servers, data 

centers, and pervasive computing [2], [3]. These 

accelerators concentrate on particular customization for 

DNN computations. DNNs are typically represented as 

computation graphs, where nodes stand for fundamental 

operations (like operators, such as convolution, 

pooling, and activation), and edges stand for the data 

that these operators consume or produce. To 

accelerate computation, these operators can be 

offloaded to accelerators [1]. Accelerators facilitate 

making efficient use of computer resources, but we need 

to grease the wheels for human beings and motivate 

them to dive into the field of computer science. Learning 

the native language is very important, as it has a great 

impact on the education of children. It has proved its 

unique importance as a key factor in getting awareness 

of new developments in studies and success in future 

life. The relationship between conscious self-regulation 

and executive functions, two groups of regulatory 

predictors, and academic performance in the native 

language has been discovered by structural equation 

modeling [4]. By knowing the importance of native 

language in academics, in this paper, work has been 

done to provide a platform that will support writing 

source code of programming language in native 

language. Programming languages use English words 

to code. Roman Urdu is the name for writing the Urdu 

language in Roman characters [5]. A recently developed 

language in South Asia is called Roman Urdu. 

Romanized Urdu deviates from the rules of the Urdu 

language. However, many internet users utilize this 

language to communicate their views and ideas on a 

variety of topics [5], [6]. Daud [7] estimates that 300 

million people use the Urdu language worldwide. 

Additionally, there are roughly 500 million native Hindi 

speakers, according to Kunchukuttan et al. [8]. The 

majority of them are literate in Roman Urdu. As a result, 

we can estimate that there are about 800 million Roman 

Urdu speakers [10]. Roman Urdu, which appears in the 

last column of Figure 1, is an example of three sentences 

that both Urdu and Hindi speakers may understand. 

 
FIGURE 1: Three phrases are compared using several foreign languages 

Zain et al. [19] introduced RU-OLD, a hate speech 

detection model for Roman Urdu that integrates deep 

learning, transfer learning, and hyperparameter 

optimization. Their study highlights the linguistic 

challenges associated with Roman Urdu, particularly the 

need for effective tokenization strategies—aspect also 

addressed in the present work. In this context, we 

propose RUPT (Roman Urdu Programming Translator), 

a platform designed to enable programmers to write 

C++ code using Roman Urdu keywords instead of 

standard English-based syntax. Specific keywords are 
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targeted in this work, and these keywords are replaced 

with some other keywords taken from “Urdu”. These 

keywords are written in “English Typeface” i.e., the 

keyword “cin” is replaced with “keyBoardSay” whereas 

“screenKiTaraf” has taken the place of the “cout” 

keyword. Here new libraries will be written that will be 

used to translate partially written programs into pure 

C++ programs. 

The core objective of this study is to reduce the 

linguistic barrier for novice programmers by enabling 

programming in native languages—specially Roman 

Urdu and Hindi—using a custom compiler extension 

named RUPT (Roman Urdu Programming Translator). 

RUPT serves as a preprocessor layer that translates 

Roman Urdu/Hindi code into syntactically valid C++ 

code, facilitating compilation through standard C++ 

compilers. 

The significance of this problem lies in the widespread 

difficulty non-native English speakers face while 

learning programming, as most programming languages 

rely heavily on English-based syntax and semantics. 

This language-centric challenges often leads to 

cognitive overload, disengagement and slower learning 

curves. 

The novelty of the proposed framework lies in its 

integration of native-language-inspired lexical tokens 

within a structured grammar system (RUPL), use of 

Finite State Machines (FSMs) for keyword recognition, 

and implementation of a custom tokenizer designed to 

handle non-standard script variations found in Roman 

Urdu. Key contributions of this work include: 

• Designing and formalizing the RUPL grammar 
with mappings for Roman Urdu equivalents of 
common C++ keywords. 

• Implementing a light-weight lexical analyzer that 
processes Roman Urdu-based source code and 
generates corresponding valid C++ code. 

• Developing a fully functional GUI-based editor 
that supports writing and compiling programs in 
Roman Urdu. 

• Conducting technical and opinion-based 
evaluations with students to validate ease of 
learning and system usability. 

The rest of the article is organized in the following 

manner: In Section II, relevant work is elaborated. Section 

III presents the methodology used for state-of-the-art. 

Results and discussion, along with design and 

implementation, are covered in Section IV, while the 

conclusion is covered in Section V. 

 
II. LITERATURE REVIEW 

Over the last few years, several researchers carried out 

different studies for code conversion. David Unga et al. 

[9] proposed a computer-adaptive translator named the 

"University of Queensland Dynamic Binary Translator" 

(UQDBT) that followed a backward pass (decoding 

executable code) and forward pass (encoding the 

decoded executable code after required improvement). 

UQDBT converges faster than systems based on 

instruction anticipation because edge weight 

instrumentation converts frequently executed code to 

native code. It was a method that made it possible to 

run software on a machine and get acceptable output, 

whereas the software was designed for some other 

machine. 

Tao Lei et al. [11] described a technique for creating 

input parsers automatically from English specifications 

of input file formats. The English specification was 

converted into a specification tree, which was then 

converted into a C++ input parser using a Bayesian 

generative model to capture pertinent natural language 

occurrences. A joint dependency parsing and semantic 

role labeling task was used to model the issue. Their 

approach is based on two different types of data: the 

first is the relationship between the text and the 

specification tree, and the second is noisy supervision, 

which is measured by how well the resulting C++ parser 

reads input examples. A state-of-the-art semantic parser 

obtained an F1-score of 66.7% using a dataset of input 

format specifications from the ACM (Association for 

Computing Machinery) International Collegiate 

Programming Contest, while this technique produced an 

F1-score of 80.0%. 

Furqan et al. [18] released ERUPD, a parallel 

English-Roman Urdu corpus of 75,146 sentence pairs, 

created via synthetic prompt-engineering and human 

validation. This dataset could significantly enhance 

token mapping and keyword consistency in state-of-the-

art related work. Besides, Ansarullah et al. [20] achieved 

97.98% accuracy in segmenting mixed Roman Urdu and 

English text using dictionary based SVM and Bi-LSTM—

highlighting effective strategies for script or code-

switching detection application applicable to lexical 

analyzers. 

RECCO, a REliable Code COmpiler that can 

automatically produce a reliable version of any C/C++ 

source code, was introduced by A. Benso et al. [12] 

The program uses a powerful algorithm for reordering 

the code and a flexible technique for variable duplication 

to build a trustworthy code that can recognize the 

appearance of important data defects. The tool makes 

changes that are entirely transparent to the programmer 

and have no impact on the targeted program’s original 

functionality. In order to keep overhead within the 

acceptable ranges, the tool also gives the user the 

option of selecting the percentage of duplicated 

variables. The approach’s efficacy and the low overhead 

that was added to the trustworthy code in terms of both 

memory occupancy and execution time were proved by 

experimental results. 

Ben Gelman et al. [13] linked source code with three 

deliverables from 108,568 projects that were 

downloaded from GitHub and had at least 10 stars and a 

redistributable license. The first set of pairs links 

Doxygen-extracted comments with corresponding 

snippets of source code in C, C++, Java, and Python. 

The second group of pairings links the raw C and C++ 

source code repositories with the build artifacts that are 
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produced when the make command is used to create 

the code. The last set of pairs links unprocessed C and 

C++ source code repositories with probable code flaws, 

which are discovered by running the Infer static 

analyzer. The code and comment pairs can be utilized 

for tasks like comment prediction or code description in 

natural language. Reverse engineering and enhancing 

intermediate representations of code from decompiled 

binaries are two operations that can be accomplished 

using the code and build artifact pairs. It is possible to 

leverage the code and static analyzer pairs for machine 

learning approaches to vulnerability finding. 

According to real-world applications and the 

drawbacks of existing programming software, Pan 

Duotao et al. [14] created the GIEPT, a type of cross-

platform modelling programming software, on the open 

source Fedora 12/Linux platform. By utilizing its XML-

based input programming approach and many 

programming kinds and scales, GIEPT offers a 

universal solution. The GIEPT now incorporates a 

number of features, such as the common solver 

interface, the unified standard using XML-based 

schema, which is used to input model data and 

automatically convert it into C++ source code, and the 

symbolic algebra system, which is used to produce the 

matrix of gradient, Jacobian, Hessian, etc. Since GIEPT 

is platform agnostic and open source, programmers are 

free to alter its characteristics and expand its 

functionality in response to the situation at hand. 

Additionally, development and application expenses 

have been significantly decreased. 

In a C++ implementation of a concordance program 

for texts in Old West Norse and Runic Swedish, Lars 

Engebretsen [15] discussed some of the author’s 

experiences. It was only reasonable to use Unicode to 

represent data both inside the program and in external 

files because the input to the program employed a 

character repertoire that no typical onebyte character 

encoding supports. The input and output were 

represented in UTF-8, while each character within the 

program was represented using C++ "wide characters." 

During file I/O, the author created C++ code conversion 

aspects that translate data between those two formats. 

This allowed him to successfully construct and execute 

the concordance application on both Windows XP (using 

Visual C++.NET 2003) and Linux (Fedora Core 3 with 

gcc 3.4.2). When switching platforms, only a few lines of 

code—the ones deciding which code conversion facet to 

use—had to be modified in the source code; all other 

sections of code stayed the same. Even though the code 

conversion facets given by the library had been 

updated, the author could still use the standard C++ 

locale framework for collation and code conversion. 

A method for automatically creating documentation 

summaries for C++ procedures was suggested by Nahla 

J. Abid et al. [16]. A summary template was made using 

method stereotypes, one for each individual method 

archetype. The primary parts of the approach are then 

extracted using static analysis. The generated 

documentation summaries are then used to update 

each method’s documentation. The strategy may be 

applied to various object-oriented programming 

languages and is very scalable. These summaries can 

aid in maintaining comprehension. Undergraduate 

students that participated in the evaluation were the 

initial subjects. The findings show that the automated 

summaries adequately describe what the approach 

accomplishes and contain all necessary details. The 

outcomes also suggest that their approach to this 

issue—creating unique templates for each stereotype—

is a workable and effective remedy. Despite the fact that 

the automated summaries were generally praised by the 

participants, some changes are still required, notably for 

the controller and collaborator, because they are rather 

complex and challenging to effectively summarize. 

 
III. METHODOLOGY 

Butt et al. [17] propose a transformer-based model 

using m2m100 with masked language modeling to 

transliterate between Roman-Urdu and Urdu, achieving 

character-level BLEU scores of 96.37 and 97.44. Their 

use of transfer learning and rigorous domain adaptation 

offers a strong precedent for lexical mapping 

approaches in Roman Urdu Programming Translator 

(RUPT). RUPT will translate a program containing Urdu 

Roman words as an alternative to C++ keywords into a 

pure C++ program. It is able to perform lexical analysis 

of the program containing a mixture of Urdu Roman 

words and C++ keywords according to the definition of 

Roman Urdu Programming Language (RUPL). 

 
A. RUPL DEFINITION 

Roman Urdu Programming Language (RUPL) contains 

the following alphabets as C++: 
{A, B, C, D, E,  F, G, H, I, J, K, 
L, M, N, O, P,  Q, R, S, T, U, V, 

W, X, Y, Z, a,  b, c, d, e, f, g, 

h, i, j, k, l,  m, n, o, p, q, r, 

s, t, u, v, w,  x, y, z, 0, 1, 2, 
3, 4, 5, 6, 7,  8, 9}     

Real numbers can be defined by the following alphabets: 

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, +, -, .} 

TABLE 1: RUPL Keywords 

C++ 
Keyword 

RUPL 
Keyword 

C++ 
Keyword 

RUPL 
Keyword 

cin keyboardSay cout screenKiTaraf 
if agar else naheTw 
for klea switch badlo 
case imkan break roko 
default pehlySay do karo 
exit niklo private niji 
public awami protected mehfooz 
while jabK return wapis 
continue jari string doree 

This table presents the mapping between C++ keywords and 
their equivalents in the proposed RUPL language. 

The alphabets given above have been used to make 

grammar for our language, RUPL. Grammar has four 
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parts given below: 

1) N: non-terminal alphabets 

2) T: terminal alphabets 

3) P: it defines production rules 

4) S: it is start symbol belongs to N 

Here is an example to define grammar for an identifier: 

N = { <id>, <digit>, <letter>} 
T = { 1 , 2 , 3 , a , b , c } 
P = production rules to be used 
1. <id> → <letter> 
2. <id> → <id> <letter> 
3. <id> → <id> <digit> 
4. <digit> → 1 
5. <digit> → 2 
6. <digit> → 3 
7. <letter> → a 
8. <letter> → b 
9. <letter> → c 
S = <id> 

B. RUPL KEYWORDS 

Besides, a subset of C++ keywords has been selected. 

Among these, some keywords will be redefined into the 

Roman Urdu language. These Urdu Roman-redefined 

keywords will be replaced back into the original C++ by 

RUPT. Table 1 shows C++ keywords and their 

corresponding special RUPL keywords. 
C. RUPL TOKENS 

RUPT tokens are the fundamental structures that 

obstruct the Roman Urdu Programming Language, 

which are developed together to compose a RUPL 

program. Every single littlest individual unit in a RUPL 

program is known as a RUPL token. A few types of 

RUPL tokens given below: 

1) Keywords, e.g., string, klea 

2) Identifiers, e.g., total, main 

3) Strings, e.g., school, university 

4) Constants, e.g., 1001, 1136, 1089 

5) Operators, e.g., *, -, +, / 
6) Special symbols, e.g., { }, ( ) 
D. RUPL TRANSLATION 

There are two essential qualities of simulated dialects: 

syntax and semantics. Language structure is an 

arrangement of standards that must be taken after to 

announce a legitimate program, while semantics depicts 

consistent conduct of the substantial program. The way 

toward contrasting source code and the punctuation of 

dialect is finished by the parser, while the code generator 

allocates implications to the program. Strategies used to 

determine the linguistic structure of any dialect are 

grammar, finite state machines, and regular 

expressions. 

As discussed earlier, RUPL grammar has four parts: N 
, T , P , and S. An element from the non-terminal 
letter set, N , speaks to a gathering of characters from 
the terminal letters in order, T . A non-terminal image is 
as often as possible encased in edge sections, <>. 
While the guidelines of generation utilize the non-

terminal to portray the structure of the language. Notice 
that N is a set, yet S is not. S is one of the components 
of set N . The beginning image, alongside the tenets of 
creation, P , empowers you to choose whether a series 
of terminals is a substantial sentence in the dialect. In 
the case of beginning from S, a series of terminals is 
created by utilizing the principles of generation; at that 
point the string is a legitimate sentence. 
1) Grammar for Identifier 

Despite the fact that a RUPL identifier can utilize any 

capitalized or lowercase letter or digit, the same as C++, 

to keep the case little, this punctuation allows just the 

letters l, m, and n and the digits 7, 8, and 9. The 

principal character must be a letter, and the rest of 

the characters, assuming any, can be letters or digits 

in any mix. This grammar has three non-terminals, 

namely, < id >, < letter >, and 
< digit >. The start symbol is < id >, one of the 
elements from the set of non-terminals. The rules 
of production are of the form: A −−· w, where A is 
a non-terminal and w is a string of terminals and 
non-terminals. The symbol −−· means “produces” 
while the grammar specifies the language by a 
process called a derivation. To derive a valid 
sentence in the language, begin with the start 
symbol and substitute for non-terminals from the 
rules of production until you get a string of 
terminals. Here is a derivation of the identifier nlm9 
from this grammar. The symbol means −−· “derives 
in one stage”. Grammar for RUPL identifier is given 
below: 

N = { <id>, <letter>, <digit>} T = { l , m , n , 7 , 8 , 9 

} 
P = shows rules of production 
1. <id> → <letter> 
2. <id> → <id> <letter> 
3. <id> → <id> <digit> 
4. <digit> → 7 
5. <digit> → 8 
6. <digit> → 9 
7. <letter> → l 

8. <letter> → m 
9. <letter> → n S = <id> 

Besides, each deduction step serves as the generation 

administrator upon which substitutions are based. For 

example, consider Rule 2: 

⟨id⟩ −−· ⟨id⟩⟨letter⟩ 

This rule is applied to substitute ⟨id⟩ during the derivation 
stage. For instance: 

⟨id⟩ 9 −−· ⟨id⟩⟨letter⟩ 9 

The conclusion of this inference operation corresponds 

to performing substitution on a letter in sequence. The 

symbol 
−−·∗ denotes "derives in zero or more steps". The last 
eight inference steps can be summarized as: 

⟨id⟩ −−·∗ nlm9 

This derivation confirms that nlm9 is a valid identifier, as it 
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can be generated from the start symbol ⟨id⟩. 
2) Finite State Machine (FSM) to Parse Identifier 

A 2024 study [21] on Roman Urdu spelling variation 

(5˜244 words per variant) emphasizes the prevalence of 

orthographic inconsistency—supporting RUPT’s FSM-
based normalization to correctly map variant tokens to 
standardized C++ keywords. In Figure 2(a), the 

arrangement of states {A, B, C} is given. A is the 
beginning state and B is the last state, whereas C is the 

reject state. There is progress from A to B on a letter, 
from A to C on a digit, from B to B on a letter or a digit, 

and from C to C on a letter or a digit. To utilize the FSM, 
envision that the information string is composed on a bit 
of paper tape. Begin in the beginning state, and output 

the characters on the information tape from left to right. 
Each time you examine the following character on the 

tape, influence a change to another condition of the 
limited state machine. Utilize just the change that is 
permitted by the curve relating to the character you 

have recently checked. Subsequent to filtering all the 
info characters, on the off chance that you are in a last 

express, the characters are a legitimate identifier. Else 
they are most certainly not. Figure 2(b) shows the 

same process through a simplified finite state 
machine by removing the optional reject state. Table 
2 and 3 show transition tables for FSM Identifier and 

Identifier through Simplified FSM, respectively. 
 

TABLE 2: Transition Table for Identifier 

Current State New State 
(Letter) 

New State (Digit) 

A 
B C 

B 
B C 

C 
B C 

This table defines state transitions when processing identifiers: 
a letter leads to one transition, while a digit leads to another, 
based on the current state. 

TABLE 3: Transition Table for Identifier through Simplified FSM 

Current State New State 
(Letter) 

New State (Digit) 

A 
B 

B 
B 

– 
B 

This table shows a simplified finite state machine (FSM) 
used to identify valid identifiers. State transitions depend on 
whether a letter or digit is encountered. 

By considering the following grammar, a few 

examples to parse RUPL keywords are represented. 

X = { a, b, c, e, f, g, h, I, k, l, n, o, r, s, t, y } 

T = { X, _ } 

N = { <id>, <letter>, <symbol>} P = Production Rules 
<id> → <id> <letter> 

<id> → <id> <symbol> 

<id> → <letter> 

<letter> → X 

<symbol> → _ S = <id> 

Now, the key word “agar” will be parsed through the 

grammar defined above. As it is defined: 

S = <id> 

= <id><letter> (using Rule 1) 

= <id><letter><letter> (using 

Rule 1) 

= <id><letter><letter><letter>(using Rule 1) 

= <letter><letter><letter><letter> (using Rule 3) 

= agar 

The keyword “agar” has been proved by RUPL 

grammar of keywords. Hence, “agar” belongs to RUPL. 

Figure 3 shows the FSM for the RUPL keyword “agar”. 

The same as the keyword “klea” also being tested. So, 

the key word “klea” will be parsed through the grammar 

defined above. Parsing of the "klea" keyword is 

performed by applying the same rules as applied to 

parse "agar" because both keywords have 4 letters. 

Figure 4 shows FSM to parse RUPL keyword “klea”. 

 

 

FIGURE 2: Finite State Machine (FSM) to Parse Identifier 

 

 
FIGURE 3: FSM to Parse RUPL keyword “agar” 

 

 

 
FIGURE 4: FSM to Parse RUPL keyword “klea” 

The Algorithm 1 outlines how the RUPT lexical 
analyzer processes Roman Urdu keywords, identifieres, 
constants, and symbols to generate valid C++ tokens: 
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IV.  RESULTS AND DISCUSSION 

The benefit of the iterative model is that it facilitates the 

early development of a functional version of the product. 

As a result, implementing modifications is less 

expensive. This is the reason to follow the iterative 

development model for RUPT. 
 

A. REQUIREMENTS 

The requirement under which this framework is 

presented is to target those audiences facing problems 

in understanding the English language. It is known by 

everyone that the usage of compilers itself has all the 

keywords in the English language. That is the main 

reason RUPT is presented. To make the lives of those 

people easy by changing specific keywords. As a result, 

their programming skills won’t be affected in any way. 

Other than that, during the process of the translation, 

natural language is also promoted, which results in 

better understandings and perceptions about the people 

that are doing this. 

 
B. DESIGN 

As everyone knows, a translator or compiler requires 
some keywords and a list of tokens by which it 
recognizes the source code and compares it with the 
grammar defined for the programming language and 
translates that programming language to another. 
Similarly, a list of keywords, presented in Table 1, has 
been designed and targeted by RUPT. The user writes 

RUPL source code in the RUPT editor and gets the 
required output as pure C++ code, and later on this 
code is passed to the traditional compiler for further 
processing. Figure 5 shows an abstract view of RUPT, 
while Figure 6 helps to present a detailed understanding 
of the state-of-the art translator. 
 

  

FIGURE 5: Abstract view of RUPT 

 

 
FIGURE 6: RUPT Detailed View 

C. IMPLEMENTATION 

After designing the RUPT, it was implemented into 
reality. For this purpose, C++ and C# have been used. 
DevCpp and Visual Studio are the main tools that have 
been used to implement the design. The RUPT editor 
has been developed as a user interface by writing 
instructions in C# as a programming language. As a 
tool, we have used Visual Studio to implement C#. 
Figure 7 shows the RUPT document window having 
RUPL source code and a RUPT interface. Source code 
to perform the process of converting a sequence of 
characters into a sequence of lexical tokens, called 
lexical analysis, is written in the C++ programming 
language. RUPT gives pure C++ code after performing 
lexing or tokenization on RUPL source code. Figure 8 
elaborates on the working of the lexical analyzer. 

 
FIGURE 7: RUPT Interface 

 
 

 
FIGURE 8: Lexical Analyzer Working 
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D. PROGRAM USED FOR EVALUATION 

To verify the correctness of RUPT’s translation output, a 

standard merge sort algorithm was used in Roman Urdu 

and then translated into C++ using the framework. The 

translated code was compiled and executed using a 

traditional C++ compiler. The Algorithm 2 shows the 

logic of the merge sort implementation used for 

evaluation: 

 

 
FIGURE 9: Sample View of Technical Servery 

 

E. VERIFICATION 

The community targeted to evaluate the state of the art 

was novel computer users towards programming, 

especially the intermediate students. The assessment 

process was based on two types of surveys. 1) 

Technical Survey and 2) Opinion Survey. In the 

technical survey, analysis was done by calculating the 

execution time of several programs, especially the 

merge sort program, by different users on many 

computers with variant aspects, e.g., CPU: Core, 

Frequency, and Generation. First of all, a pure C++ 

merge sort program was executed as aforesaid and 

calculated its execution time in microseconds. After that, 

a calculation was performed for the execution time taken 

by RUPT to yield a pure C++ program for merge sort 

from RUPL-based source code. A little bit of an 

increment in overall execution time was observed, but 

the understanding and learning rate increased as new 

learners found ease towards program scripting. A 

sample view of the technical servery is presented in 

Figure 9. 

The opinion survey was conducted using both hard 

copy and digital forms, targeting intermediate-level and 

early undergraduate students from multiple educational 

institutions. Prior to participation, students were 

introduced to the use of RUPT in conjunction with 

RUPL for scripting, and its comparison with other 

programming languages. They were then asked to 

share their perspectives. The survey included students 

from both colleges and universities, representing a 

diverse academic background. The results based on 

responses from different institution types are illustrated 

in Figure 10. 

In Figure 11, overall results present that 83.40% of 

participants appreciated RUPT as a great initiative to 

motivate individuals to the field of computer science, 

8.30% said that in their views it does not affect them, 

while the same percentage remained neutral. 

 
 

FIGURE 10: Views of Each Institute from Opinion Survey 
 

 

Cumulative Sentiment Proportions Across All Institutes 

 

 

 

FIGURE 11: Overall Views from Opinion Survey 

Neutral 

 

 

 

Negative 

Positive 
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V. CONCLUSION 

This work has proffered a framework, "Roman Urdu 
Programming Translator” (RUPT), as an additional layer 
to the original C++ compiler that translates a program 
coded in Roman Urdu or Hindi, known as "Roman Urdu 
Programming Language" (RUPL), into a proportionate 
C++ program. In this study, a special set of Roman Urdu 
keywords includes, e.g., “keyboardSay (ks)” instead of 
“cin”, “screenKiTaraf (skt)” instead of “cout”, “klea” 
instead of “for” etc., is focused on. In this work, 
additional Urdu and Hindi Roman keywords are added 
to the original set of C++ language and replaced by the 
C++ equivalent keywords through RUPT to convert it 
into a pure C++ program. RUPT is only composed of the 
lexical analysis phase. Keywords and tokens are 
defined and parsed by following the rules delineated in 
RUPL grammar. Evaluation is based on two types of 
surveys: 1) The technical survey has observed a minor 
increment in overall execution time, but the 
understanding and learning rate increased. 2) The 
opinion survey has presented that 83.40% of 
participants appreciated RUPT as a great initiative to 
motivate novel users to the field of computer science, 
8.30% said that in their views it does not affect them, 
while the same number of participants remained neutral. 
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