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ABSTRACT

Accurate brain tumor detection remains critical yet challenging due to diagnostic complexity and variability in
MRI interpretation. This study proposes a deep learning approach for automated multi-class brain tumor
classification using transfer learning (TL). Three pre-trained CNN models, ResNet50, InceptionV3, and VGGL16,
were adapted and evaluated on a curated MRI dataset of 7,000+ images. Preprocessing, feature extraction, fine-
tuning, and integration of Explainable Al (Grad-CAM, LIME, SHAP) ensured robust and interpretable results.
ResNet50 achieved the highest performance with 98% accuracy, 0.92 F1-score, and 0.96 AUC, outperforming
the other models across all metrics, with strong convergence and minimal misclassification. ResNet50’s
architecture enabled deeper feature learning and improved generalization. Explainable Al visualizations
confirmed model focus on tumor-relevant MRI regions, enhancing clinical interpretability. The findings position
ResNet50 as an effective and explainable solution for MRI-based brain tumor classification, suitable for future
real-world deployment and further expansion to mobile and multi-center applications.

INDEX TERMS: Brain Tumor Detection, Deep Learning, ResNet50, MRI Classification, CNN, Medical

Imaging, Binary Classification, Tumor Diagnosis.

I. INTRODUCTION

Brain tumors are among the most critical neurological
disorders, characterized by aberrant development
of cells inside or around the brain that perturb normal
brain function [1]. Depending on their nature, brain
tumors are often classed into benign (non-cancerous
and slow-growing) and malignant (cancerous and
aggressive) [2]. According to the International Agency
for Research on Cancer (IARC), more than 126,000
new brain tumor cases are diagnosed annually
worldwide, with over 97,000 deaths attributed to the
disease each year. The World Health Organization
(WHO) further projects a 5% annual increase in brain
tumor cases globally, making early detection and
effective treatment increasingly vital [3; 4].

The early and correct diagnosis of brain tumors
plays a vital role in enhancing patient outcomes,
reducing mortality rates, and planning personalized
treatment strategies [5]. Magnetic Resonance Imaging
(MRI) has evolved as a key imaging technique owing to
its non-invasive quality and ability to obtain superior
resolution soft-tissue contrasts. However, the manual
interpretation of MRI images by radiologists is a time-
consuming process that is susceptible to diagnostic
inconsistencies, inter-observer variability, and potential
oversight, especially when dealing with large imaging

datasets [6; 7].

In the past couple of years, the rise of Artificial
Intelligence (Al), notably deep learning (DL), has
transformed the landscape of medical image analysis
[8]. Al models are now capable of learning complex, non-
linear representations from raw image data, thus
assisting healthcare professionals in decision-making
processes [9]. Among these models, Convolutional
Neural Networks (CNNs) have shown remarkable
performance in a broad variety of computer vision
applications, including classification of images,
segmentation of images, and object recognition in
images. Their success in the biomedical domain has led
to promising outcomes in brain tumor classification,
localization, and segmentation [10].

However, deep CNNSs require substantial labeled data
and computational resources for training from scratch,
which poses a significant limitation in medical imaging,
where curated and annotated datasets are limited due to
privacy concerns, expert availability, and patient
variability. To overcome this challenge, transfer learning
has emerged as a strong alternative. Transfer learning
facilitates the use of pretrained deep learning (DL)
models, generally developed on massive datasets like
ImageNet, to be fine-tuned or adapted for specific
medical tasks with minimal training data and
computational cost.
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Recent investigations have examined the use of CNN
models such as VGG-16, ResNet, Inception, and hybrid
models for the classification of brain tumors. For
example, InceptionV3 was used with ensemble
classifiers to achieve high accuracy on brain MRI scans.
A CNN-SVM combination was employed and achieved
over 95% classification accuracy. The fine-tuned
versions of VGG and ResNet were used to improve
performance. These studies confirm the viability of DL-
based methods but often focus on binary classification
(tumor vs. no tumor) or evaluate a single model
architecture in isolation [11; 12].

Moreover, there are several remaining limitations in
existing literature:

- Lack of comparative analysis across multiple

pretrained CNN architectures using a consistent

dataset and evaluation framework.

- Absence of multi-class classification studies that

distinguish between glioma, meningioma, pituitary

tumor, and no tumor categories, which is essential
for real-world clinical deployment.

- Minimal investigation into the impact of different

transfer learning strategies (i.e., feature extraction vs.

finetuning) under the same experimental setup.

- Limited exploration of resource-efficient models

suitable for deployment in hospitals with constrained

computing environments.

A. MOTIVATION AND OBJECTIVE

This work intends to avert the gaps by setting up a
transfer learning-based deep learning framework that
applies and compares three state-of-the-art pre-
trained CNN architectures, ResNet-50, InceptionV3,
and VGG-16 for multi-class brain tumor classification.
The models are evaluated using a comprehensive MRI
dataset obtained from multiple open-access sources,
including Br35H, SARTAJ, and Figshare, containing
over 7,000 labeled images. Both feature extraction and
fine-tuning strategies are employed to investigate the
effect of transfer learning depth on classification
performance.

Through extensive experimentation and evaluation
using metrics such as F1l-score, accuracy, precision,
and recall, the research seeks to discover the optimum
model configuration for real-world deployment. The
overarching goal is to build an automated, accurate, and
resource-efficient computer-aided diagnostic (CAD)
mechanism for the prompt identification and
categorization of brain tumors, thereby reducing
radiologists’” workload and enhancing diagnostic
confidence in clinical environments.

B. KEY CONTRIBUTIONS
The significant advancements of this work are outlined
as follows:

1) Development of a Transfer Learning
Framework: A robust and scalable deep learning
system is provided for diagnosing brain cancers from
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MRI images, utilizing transfer learning on pre-trained
CNN architectures, ResNet-50, InceptionV3, and
VGG-16.
2) Multi-Class Brain Tumor Classification: The
study addresses a four-class classification problem
involving gliomas brain tumor, meningiomas brain
tumor, pituitary tumors, and no brain tumor
categories. This enhances the clinical relevance of
the proposed system beyond binary classification.
3) Comparative Analysis of Transfer Learning
Strategies: Both feature extraction and fine-tuning
technigues are implemented and analyzed under the
same experimental settings to assess their
effectiveness on medical image classification tasks.
4) Utilization of a Large and Diverse Dataset: A
comprehensive brain MRI dataset comprising over
7,000 labeled images from multiple publicly available
sources (Br35H, SARTAJ, and Fig-share) is curated
and used for training, validation, and testing.
5) Performance Evaluation Using Multiple
Metrics: The models are tested using important
classification metrics that involve precision, recall,
Fl-score, and accuracy, along with confusion
matrices for detailed performance assessment.
6) Design of a Resource-Efficient Al Solution:
The research demonstrates that high-performance
classification can be achieved without training
models from scratch, making the proposed solution
viable for deployment in resource-constrained clinical
environments.
7) Key feature identification using XAl: To
improve the transparency and interpretability of the
model, the Explainable Al (XAl) Grad-CAM model is
used, which has generated heat maps of MRI
images that highlight the regions of the brain tumor.
The rest of this work is organized as follows: Section Il
analyzes relevant work on brain tumor detection using
machine learning and deep learning, noting gaps in the
field. Section Il explains the suggested technique,
including dataset preparation, transfer learning
methodologies (feature extraction vs. fine-tuning), and
model architectures (ResNet50, InceptionV3, VGG16).
Section IV describes the experimental setup, evaluation
metrics, and hardware configuration. Section V
presents the results, with a comparative analysis of
model performance across accuracy, loss, F1-score,
and AUC. Finally, Section VI concludes the study,
discusses clinical implications, and suggests future
directions.

Il. RELATED WORK

Over the last decade, the integration of Artificial
Intelligence (Al) technologies, notably Machine Learning
(ML) and Deep Learning (DL), into medical imaging has
significantly transformed brain tumor detection and
classification methodologies. These innovations have
brought promising advancements in terms of diagnostic
automation, accuracy, and efficiency. However, despite
the increasing adoption of Al in neuroimaging, several
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persistent limitations in current research impede
widespread clinical adoption, including poor model
generalizability, lack of interpretability, computational
inefficiencies, and limited scalability to real-world
medical environments.

Initial approaches in this domain largely relied on
traditional machine learning methods applied to
handcrafted features extracted from MRI images. For
instance, the study Design and Analysis for
Advancements in Brain Tumor Detection Model by using
Machine Learning (ML) Techniques employed classical
ML algorithms to process and classify MRI scans.
Although these models demonstrated a baseline
capacity to differentiate between tumor types, they
struggled with low segmentation precision, high false
positive rates, and poor adaptability across datasets
with different acquisition parameters [12]. These
limitations underscore the challenges posed by manual
feature engineering and rule-based classification
strategies in complex imaging tasks.

To systematically assess developments in this
domain, several literature reviews and meta-analyses
have been conducted. The Systematic Literature
Review on ML and DL from 2013 to 2023 compiles a
decade’s worth of studies and reveals a heavy
dependence on annotated datasets, inconsistent
imaging protocols, and a lack of standardized evaluation
benchmarks. These issues severely limit model
reproducibility and generalization, particularly when
deployed across diverse clinical institutions [13].

Moreover, survey-based studies such as Brain Tumor
Identification and Classification Using Machine Learning
(ML): An In-Depth Survey and Brain Tumor Identification
Using Machine Learning (ML) have highlighted the
evolution of ML in neuro-oncology while identifying
several inherent limitations. These include high intra-
class variance due to morphological differences among
tumor types, inter-scanner variability, and the time-
consuming nature of manual diagnostic processes.
These studies emphasize that traditional ML systems are
often error-prone and inefficient for real-time decision-

making, particularly in  resource-limited clinical
environments [14; 15].
The transition to deep learning marked a

significant leap in model performance, particularly for
feature extraction and classification by using
convolutional neural networks (CNNs). Nonetheless,
several DL-based studies exhibit shortcomings. For
instance, works such as Classification of Brain Tumor
Detection Techniques: A Review and Empowering
Healthcare with Al introduced hybrid Al approaches that
combine multiple ML/DL models. While these
architectures yielded improved accuracy, they suffered
from increased model complexity, higher computational
costs, and difficulty in deployment due to hardware
constraints and the requirement for large annotated
datasets [16; 17].

Other integrative studies, like Brain Tumor Detection:
Integrating ML and DL, explored dual-pipeline systems
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combining traditional ML with CNN-based classifiers.
Although these attempts sought to utilize the best of
both worlds, they resulted in increased training duration,
limited scalability, and suboptimal performance when
applied to multi-class tumor classification scenarios [18].

Deep learning architectures specifically designed for
medical image analysis, such as Inceptionv3 and
ResNet-50, have demonstrated state-of-the-art results
in tumor classification tasks. For example, the work An
Inception V3-Based Glioma Brain Tumor Detection in
MRI Images leveraged deep CNNs for detecting gliomas
with high accuracy. However, the model required
extensive hyperparameter tuning and access to high-
quality, annotated data, making it unsuitable for
deployment in low-resource hospitals [16]. Similarly,
Deep Learning-Enhanced MRI for Brain Tumor
Detection showcased improved feature learning through
DL but faced overfitting issues due to limited sample
diversity and a lack of interpretability mechanisms [19].

Further, the study Optimizing Brain Tumor
Classification with ResNet-50 Feature Extraction
examined the effectiveness of residual networks in
extracting hierarchical features from MRI data. Despite
achieving impressive accuracy metrics, the
computational demands of ResNet-50 present a
practical barrier to its clinical application, particularly in
rural or under-resourced settings [6].

Comparative analyses, such as A Comparative Study
of DL vs. ML, clearly show the superiority of deep
learning in terms of raw performance but also expose
concerns regarding training time, memory consumption,
and lack of transparency in decision-making processes.
These limitations hinder clinical trust and adoption,
especially when models are treated as black-box
systems [17].

The problem of data imbalance and generalization is
also prominent in studies like Identification of
Challenges and Limitations in Detection and
Segmentation of Brain Tumors. These works identify key
challenges, including skewed class distributions (e.g.,
more glioma cases than meningioma), segmentation
inaccuracies, and a lack of robust evaluation
frameworks that cover both tumor detection and multi-
class classification [20].

To improve upon traditional and deep learning
approaches, hybrid models have also been introduced.
Brain Tumor Detection Using Hybrid Machine Learning
Models proposes an ensemble-based ML approach to
enhance predictive accuracy. While performance
improvements were noted, the added complexity and
extended training requirements complicate clinical
deployment timelines and maintenance cycles [18].

From this extensive literature review, it becomes
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TABLE 1: Comparison of Existing Work vs. Proposed Methodology

Study / Reference

Limitations ldentified

Our Proposed Solution

Design and Analysis for
Advancements in Brain Tumor
Detection [12]

Low segmentation accuracy; high
false positives

ResNet50, InceptionV3, and VGG-16
with robust feature learning and
reduced false detection.

Systematic Literature Review on
ML and DL (2013-2023) [13]

Heavy reliance on labeled data;
inconsistent quality

Transfer learning with pre-trained
models lowers annotation
dependency

Brain Tumor Detection Using
Machine Learning: A
Comprehensive Survey [14]

Morphological variation and imaging
inconsistency

Multi-class classification across four
tumor types improves generalizability

Brain Tumour Detection Using
Machine Learning [15]

Time-consuming manual analysis;
prone to error

End-to-end automated deep learning
classification

Classification of Brain Tumor
Detection Techniques: A Review
[16]

Tumor variability impacts detection
accuracy

CNN models trained on diverse
and augmented datasets

Empowering Healthcare with Al
[17]

Limited annotated MRI data;
overfitting risk

Combines large public datasets with
augmentation and regularization

Brain Tumor Detection:
Integrating ML and DL [18]

Complex model integration and
training duration

Lightweight architecture and efficient
transfer learning strategies

Deep Learning-Enhanced MRI for
Brain Tumor Detection [19]

Overfitting on small datasets; poor
interpretability

Standardized dataset and
benchmarking; visual explainability
planned (e.g., Grad-CAM)

An InceptionV3-Based Glioma
Detection [16]

Requires large annotated data and
hyperparameter tuning

Efficient use of public datasets with
less tuning via transfer learning

Optimizing Brain Tumor

Computational cost limits deployment

Balanced performance and efficiency

Classification with ResNet-50 [6]

in clinical settings using fine-tuning

A Comparative Study of DL vs. ML

[17] resource clinics

DL models not feasible for low-

Designed for high accuracy and low
hardware requirements

Identification of Challenges in

Tumor Segmentation [20] errors

Class imbalance and segmentation

Balanced multi-class dataset and
evaluation metrics used

Brain Tumor Detection Using
Hybrid ML Models [18] training time

High complexity and extended

Streamlined transfer learning
framework for quick deployment

Evident that most existing studies focus on binary
classification (tumor vs. no tumor), evaluate a single
network architecture in isolation, or fail to investigate
different transfer learning strategies comprehensively.
More critically, very few works address the problem of
computational  feasibility in  real-world clinical
workflows, especially those involving high-resolution
images and multi-class tumor scenarios [19; 20]. To
address these gaps, our proposed research introduces
a robust and unified transfer learning framework that:

- Performs  four-class categorization spanning
gliomas, meningiomas, pituitary tumor and no tumor
categories.

- Evaluates and compares three state-of-the-art
pretrained CNN architectures: ResNet-50,
InceptionV3, and VGG-16.

- Benchmarks two core transfer learning strategies,

feature extraction and fine-tuning, under a uniform

experimental protocol.

- Emphasizes computational efficiency, thereby

enabling practical deployment in both well-equipped

and resource-constrained clinical environments.

This work aims not only to improve classification
performance but also to bridge the translational gap
between model development and clinical application.
Our approach incorporates real-world constraints and
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focuses on generalizability, interpretability, and
scalability to ensure relevance and impact in actual
diagnostic settings, as shown in Table I.

lll. SYSTEM METHODOLOGY

This section elaborates on the full technique utilized for
the creation of a transfer learning-based brain tumor
classification system employing deep convolutional
neural networks (CNNs). The proposed methodology
tries to solve the shortcomings mentioned in previous
techniques by using the capabilities of three pre-trained
models, ResNet-50, InceptionV3, and VGG-16 on a
large-scale, multi-class MRI dataset. The methodology
is composed of several stages: data acquisition and
preprocessing, architecture adaptation, transfer learning
strategy, training algorithms, optimization methods,
performance evaluation, and integration of Explainable
Al (XAl) for model interpretability.

A. OVERVIEW OF THE PROPOSED FRAMEWORK

The proposed system consists of an end-to-end deep
learning pipeline designed for the classification of brain
MRI images into four diagnostic categories: gliomas,
meningiomas, pituitary tumors, and no tumor. Each
input image undergoes a standardized preprocessing
phase before being passed into one of the selected pre-
trained CNN architectures. The models are adapted
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using transfer learning techniques, either feature
extraction or fine-tuning, to classify tumors effectively with
limited training data. To ensure trust and clinical
acceptance, Explainable Al (XAl) approaches are
incorporated to bring visibility into the model’s process of
decision-making.

B. DATASET DESCRIPTION AND PREPROCESSING

The MRI dataset employed in this study comprises a
combination of three publicly available sources: Br35H,
SARTAJ, and the Fig share repository. These datasets
contain axial T1-weighted contrast-enhanced (T1W-CE)
MRI brain images with corresponding annotations
across four categories. In total, 7,022 images were
collected and layered into training (70%), validation
(15%), and test (15%) subsets to ensure a balanced
evaluation.

Image preprocessing is critical for standardizing data
input across different models and includes the following
steps:

- Resizing: Images are resized to 224x224 pixels for
ResNet-50 and VGG-16, and 299x299 pixels for
InceptionV3 to match the input layer specifications.

- Normalization: Pixel intensity data is adjusted to
the [0, 1] range to ensure uniform input.

- Data Augmentation: Techniques such as
horizontal/vertical flips, zooming, and random
rotations are used to artificially increase the dataset
and enhance generalization.

- Label Encoding: Class labels are single-hot

encoded to meet the categorical output format of
the models.

C. TRANSFER LEARNING STRATEGY
Transfer learning is leveraged to reuse knowledge
acquired from models trained on the ImageNet dataset.
Two approaches are employed:
1) Feature Extraction: The pre-trained
convolutional base is frozen, and only the top
classification layers are retrained on the MRI dataset,
as shown in Figure 1. This method is computationally
efficient and less prone to overfitting.
2) Fine-Tuning: A portion of the higher-level
convolutional layers is unfrozen and retrained

alongside the classifier. This allows the model to
learn domain-specific features relevant to MRI data,
offering better performance when the training data is
moderately sized.

FIGURE 1: Samples of datasets used in training and testing.

D. MODEL ARCHITECTURE ADAPTATION
In this study, three widely recognized pre-trained

Inception V3,
VGG16, ResNet50

Pl _ QL
¢_) - —
= o100

Model Fusion

Input: MRI Scans

Model

Preprocessing lilertarencs

the Data

Post Processing

» Evaluation: Accuracy, F1
ROC Curves

FIGURE 2: Adapted architectures of VGG-16, ResNet-50, and InceptionV3 with transfer learning classifier heads.
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Convolutional Neural Network (CNN) architectures,
Res-Net-50, VGG-16, and InceptionV3, are adapted to
perform multiclass classification of brain tumors. These
designs are chosen for their shown efficacy in large-
scale visual identification challenges and their capacity
to generalize to medical imaging domains via transfer
learning, as seen in Figure 2.

The VGG-16 architecture is a 16-layer deep CNN that
employs a simple and consistent design pattern of
stacked three-by-three 3x3 convolutional layers,
succeeded by max-pooling layers. It is known for its
depth and uniform structure, which makes it both
interpretable and effective for transfer learning. In this
work, the original classifier head of VGG-16 is removed
and replaced with a custom classification block
consisting of a Flatten layer, a fully connected A dense
layer comprising 512 units with RelLU activation,
followed by a Dropout layer (rate 0.5) to mitigate
overfitting, and concluding with a final dense layer
including 4 output neurons and softmax activation to
support multi-class prediction.

The ResNet-50 deep residual network model is a 50-
layer network that introduces identity-based skip
connections, allowing gradients to bypass one or more
layers during backpropagation. This solution directly
tackles the vanishing gradient issue that often impacts
deep neural networks. By facilitating the training of far
deeper structures, ResNet-50 can capture complex and
abstract features within MRI data. In this framework, the
final fully connected layers of ResNet-50 are replaced
with a Global Average Pooling (GAP) layer that follows a
Dense classification layer with softmax activation to
produce class probabilities for the four tumor kinds.

The InceptionV3 architecture is a highly modular CNN
that utilizes inception modules, which perform multiple
convolution operations in parallel (e.g., 1x1, 3x3, 5x5)
within the same layer. This design enhances

E. TRAINING ALGORITHMS AND OPTIMIZATION
Two training algorithms are proposed to guide the
model learning process:

Algorithm  1: Baseline Transfer Learning
Classifier (21) This algorithm initializes the pre-
trained CNN with its convolutional base frozen (feature
extraction), appends a custom classifier head, and trains
only the added layers using categorical cross-entropy.

Algorithm 2: Progressive Fine-Tuning Strategy
(22) This advanced strategy begins by training the
classifier head (as in Algorithm 1), then progressively
unfreezes deeper layers of the convolutional base for
additional training. A small learning rate is maintained to
avoid destabilizing pretrained weights. This staged
unfreezing allows gradual domain adaptation.

Optimization: All models are built on the Adam
optimizer with a learning rate of n= 10, categorical
cross-entropy loss, and accuracy as the main
performance indicator. Regularization methods such as
dropout and early halting are applied to avoid overfitting.

14

Algorithm 1 Baseline Transfer Learning Classifier

Require: Pre-trained CNN fp, dataset D, batch size B,
number of epochs N
Ensure: Trained model fy
1: Freeze all convolutional layers of fy
: Append custom classifier head to fp
: forepoche = 1to N do
for each batch (z,y) in D do
i < fo(x)
Compute loss £(7,y)
Update classifier head weights using backpropa-
gation
end for
9: end for
. return fp

(=]

> Forward pass

R A

o0

S

&> Fine-tuned model

Algorithm 2 Progressive Fine-Tuning Strategy

Require: Pre-trained CNN fy, dataset D, number of epochs
N, unfreeze depth d, batch size B
Ensure: Fine-tuned model fy
1: Freeze all layers of fg; append classification head
2: Train classifier head on D for a few initial epochs
3: Unfreeze the top d layers of the CNN base
4: Re-compile the model with a reduced learning rate 17 <
1

5: forepoche =1to N do

6 for each batch (z,v) in D do

7: Perform forward pass and compute predictions
9§+ fo(z)

8: Compute loss £(7, y)

0: Backpropagate and update weights using Adam
optimizer

10: end for

11: end for

12: return fp > Fine-tuned model

F. EXPLAINABLE Al INTEGRATION

To boost model transparency and interpretability, there
are several Explainable Al (XAIl) strategies, such as
Grad-CAM, LIME, and SHAP, offering insights into the
decision-making process of the trained models. The
description of each strategy is given below. As our
dataset is large, LIME and SHAP are computationally
expensive to handle such a large dataset, Grad-CAM
the XAl method, is applied in this framework.

- Grad-CAM (Gradient-weighted Class
Activation Mapping): This approach provides
heatmaps that show the areas of the MRI images most
relevant in the model’s decision-making process. By
visualizing the importance of specific areas of the
brain in relation to tumor classification, Grad-CAM
helps clinicians understand what parts of the MRI
image the model focuses on.

-LIME (Local Interpretable Model-agnostic
Explanations): LIME predicts the model’s behavior
locally, producing interpretable explanations for
individual predictions. This can help explain why the
model classified an image into a particular tumor
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category, providing insights into specific features that
drove the classification.

-SHAP (Shapley Additive Explanations): SHAP
values decompose the model's prediction into the
contribution of each feature (e.g., pixel region) to the
final classification. This global explanation technique
helps quantify the importance of various image
regions across the entire dataset.

Grad-CAM XAl method is incorporated into the model
evaluation phase, where it provides visual and
numerical explanations of the model’'s reasoning for
each prediction, enhancing trust and transparency.

G. EVALUATION METRICS
The proposed models are evaluated using:

- Accuracy: Proportion of correctly categorized
positive and negative instances on brain magnetic
resonance images.

- Precision: Correct True Positive (TP) predictions

per total predicted True Positive (TP).

- Recall: Correct True Positive (TP) predictions per

actual True Positive (TP).

- F1-Score: Harmonic mean of precision metrics and

recall metrics.

- Confusion Matrix: A visual matrix of true labels vs

predicted labels.

- XAl Explanation Consistency: Analysis of the

consistency and reliability of explanations across

different model runs.

These metrics ensure a comprehensive evaluation
across all tumor classes and classification challenges.
The integration of XAl enables robust performance
benchmarking, model adaptability for real-world clinical
deployment, and enhanced interpretability, essential for
gaining clinical acceptance and ensuring patient safety.

IV. EXPERIMENTAL SETUP
In this study, we evaluate four deep learning (DL)
models, CNN, VGG16, ResNet50, and InceptionV3, for
brain tumor detection using a publicly available MRI
brain tumor dataset. Below are the details of the
experimental setup, including dataset description, model
training, and evaluation procedure.
A. DATASET DESCRIPTION
The dataset employed in this work is the Brain MRI
images Dataset, which comprises tagged images of
brain MRIs, with two primary classes: tumor and non-
tumor. The collection comprises pictures of varied
resolutions and kinds of MRI scans, e.g., T1-weighted
(T1W), T2-weighted (T2W). The total count of images is
7022. The photos were separated into training (80%)
and testing (20%) groups to make sure that the dataset
was balanced across the classes.
B. PREPROCESSING
Before feeding the MRI images into the models, several
preprocessing steps were performed:

- Resizing: All the images were scaled to 224x224

pixels to satisfy the input needs of the models.

- Normalization: The pixel values of the images
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were standardized to the range [0, 1] to accelerate the
training process and increase convergence.
- Augmentation: To strengthen the durability of the
models and minimize overfitting, data augmentation
methods such as random rotation, flipping, and
zooming were added to the training set.
C. MODEL ARCHITECTURE AND HYPERPARAMETERS
A basic convolutional neural network (CNN) model
consists of 3 convolutional layers, followed by max-
pooling, and a fully connected layer for classification,
which provides the basis for different models used in the
framework. Resnet-50, VGG-16, and Inception-V3
architectures of CNN were used for the comparison:

-VGG16: A deeper network with 16 layers
comprised of convolutional layers followed by fully
linked layers. Pre-trained weights from ImageNet
were utilized to fine-tune the model (23).

- ResNet50: A residual network with 50 layers was
designed to handle the issue of the vanishing
gradient. It includes skip connections to allow deeper
models to be trained (24).

- InceptionV3: A model designed by Google for
image classification. It uses auxiliary classifiers and
factorized convolutions, which make it more efficient
in terms of both speed and accuracy (25).

The following hyperparameters were used across all
models:

- Learning Rate: 0.0001 for all models.
- Batch Size: 32 images are in a single batch.
- Epochs: 50 epochs were used to train the model.
- Optimizer: Adam optimizer with a learning rate
decay of 0.9.
- Loss Function: Categorical Cross-Entropy was
employed as the loss function for multiclass
classification.
D. TRAINING AND EVALUATION
Each model was trained on the training set and
evaluated on the testing set using several performance
metrics:
- Accuracy: The proportion of  correctly
categorized brain magnetic resonance images.
- Precision: Correct predictions of true positive (TP)
per total of predicted true positives (TP) and False
negative (FN).
- Recall: The correct predictions of True Positive
(TP) per actual True Positive (TP).
- F1-Score: Harmonic mean of precision metrics
and recall metrics.
- Area Under the ROC Curve (AUC): A measure of
the model’'s ability to discriminate between the
classes.

The training was performed on a machine with an
NVIDIA Tesla V100 GPU, which accelerated the training
of the models.

E. EVALUATION METRICS AND VALIDATION

The models were evaluated using the following:

- Confusion Matrix: To understand the distribution
of True Positives (TP), False Positives (FP), True
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Negatives (TN), and False Negatives (FN) for each
model.
- ROC Curve: A graphical representation of the true
positive rate against the false positive rate, used to
visualize the performance across different
thresholds.
- Loss Curve: To observe the convergence behavior
and the extent of overfitting during training.
- Precision-Recall Curve: To assess the balance
between precision and recall, especially in cases of
imbalanced datasets.
F. HARDWARE SETUP
To effectively train and evaluate the proposed deep
learning models, a high-performance computational
environment was utilized. The hardware specifications of
the experimental setup are outlined below:

- CPU: Intel Core i9-10900K, 10-core processor
clocked at 3.7 GHz, providing exceptional single-
thread and multi-thread performance suitable for
parallel data preprocessing and 1/0O operations.

- GPU: NVIDIA Tesla V100, equipped with 32GB of
VRAM, is a contemporary accelerator suitable for
deep learning tasks. The Tensor cores significantly
improve matrix multiplication, hence facilitating rapid
model training and real-time inference.

- RAM: 64GB DDR4 memory provides sufficient
capacity for handling large datasets and many model
instances throughout the training, validation, and
testing phases.

- Operating System: Ubuntu 20.04 LTS, the robust
and widely used Linux version, provides seamless
interoperability with  prominent deep learning
frameworks such as TensorFlow, PyTorch, and
Keras.

This configuration was used to accelerate training
cycles and eliminate computing limitations. It also
facilitates the execution of computationally intensive
activities such as batch loading high-resolution MRI
images into memory and finetuning deep convolutional
networks. The GPU proved crucial in expediting gradient
updates and backpropagation, hence substantially
reducing training time.

G. ACCURACY OVER EPOCHS

An essential metric of a model’s ability to accurately
classify data is accuracy. Figure 3 illustrates the
model accuracy of ResNet50, InceptionV3, and VGG16
during the training process. All models exhibited a
positive learning trajectory; however, the performance
trends varied significantly across architectures.

By the end of the 10th epoch, ResNet50 achieved
a peak training accuracy of 98%, outperforming
InceptionV3 (96%) and VGG16 (95%). This superior
accuracy is directly attributed to the architectural
advantage of ResNet50, which incorporates residual
connections. These connections allow the model to
learn identity mappings, thus minimizing the vanishing
gradient issue that commonly restricts deep networks.

Residual learning allows for deeper architectures
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without degradation in performance, facilitating the
capture of fine-grained features critical for distinguishing
between tumor types. In contrast, while InceptionV3
utilizes inception modules to extract multi-scale features
and VGG16 uses a consistent convolutional structure,
both fall short in comparison to ResNet50’s feature
propagation capacity and representational depth.

Model Accuracy over Epochs

—o— ResNets0 .
VGG16
—a— Inceptionv3 .

0.80

2 4 6 8 10
Epochs

FIGURE 3: Accuracy Comparison.

H. LOSS OVER EPOCHS

Training loss, derived from the binary cross-entropy
function, quantifies the discrepancy between predicted
and actual labels. A declining loss curve signifies
successful learning. As depicted in Figure 4, all models
demonstrate a steady decrease in loss over epochs, but
ResNet50 converged significantly faster and to a lower
value.

Initially, all models began with a high loss (0.6), but
ResNet50’s loss sharply declined to 0.10 by the final
epoch. In comparison, InceptionvV3 and VGG16
plateaued at higher values of 0.12 and 0.15, respectively.
This rapid convergence in ResNet50 can be attributed to
its advanced learning capacity, which stems from both
depth and residual connections that facilitate effective
feature reuse and error signal propagation.

The lower loss indicates better model confidence and
generalization, reducing the likelihood of overfitting or
underfitting—a crucial factor in medical imaging, where
data diversity and feature subtlety are pronounced.

Model Loss over Epochs

—o— ResNetso
VGG16
06 —i InceptionV3

Epachs

FIGURE 4: Loss over Epochs.
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I. CONFUSION MATRIX (RESNET50)

The confusion matrix (Figure 5) presents a thorough
analysis of classification results by comparing
anticipated labels versus genuine class labels. For multi-
class issues such as brain tumor classification, it is a
vital diagnostic tool to assess class-specific model
performance.

ResNet50’s confusion matrix reveals a high number of
True Positives (TP) and True Negatives (TN) across
all four categories: glioma tumor, meningioma tumor,
pituitary tumor, and no tumor. The little misclassification
rate highlights its significant sensitivity (capacity to
identify actual tumor cases) and specificity (ability to
accurately differentiate non-tumor instances).

In therapeutic settings, where false negatives may
delay treatment and false positives might lead to
unnecessary interventions, this high level of accuracy is
very crucial. The reliability of ResNet50’s predictions
indicates its potential as a trustworthy decision-support
instrument in radiological diagnostics.

J. ROC CURVE

The Receiver Operating Characteristic (ROC) curve
(Figure 6) illustrates the true positive rate in relation to
the false positive rate across various categorization
levels. The classification efficacy of a model is visually
represented as a curve.

ResNet50 demonstrated exceptional discriminative
ability between tumor and non-tumor occurrence with an
AUC (Area Under Curve) score of 0.96. The ROC curve
demonstrates robust class separation, remaining far
above the diagonal baseline despite data imbalance.

In high-stakes medical applications, such high AUC
values confirm the model’s capacity to distinguish subtle
variations in MRI scans, which might be imperceptible to
the human eye, thereby enhancing diagnostic accuracy.

Confusion Matrix RESNET

570 27 0 3 300
250
Sn 9 148 35 30 200
e)
15
-
g - 150
Fn- 44 19
-100
m- 4 15 -50
i i i -0
0 1 2 3

Predicted Label

FIGURE 5: Confusion Matrix.
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FIGURE 6: ROC Curve.

K. PRECISION-RECALL CURVE

The precision-recall curve (Figure 7) gives insights into
the trade-off between precision (positive predictive
value) and recall (sensitivity). It is particularly
informative in cases of class imbalance, which is
common in medical datasets.

ResNet50 maintained a consistently high balance
between precision and recall throughout the range of
thresholds. The large area under the curve (AUC)
indicates that the model sustains high precision without
compromising recall. This is crucial in a medical
context, as high recall ensures tumor cases are not
overlooked, while high precision minimizes the rate of
false alarms.

Such robustness makes ResNet50 well-suited for
deployment in environments where the consequences of
diagnostic errors are significant, such as oncology
departments and neurological clinics.

Precision-Recall

1.0 1

0.9

0.8 1

Precision

0.7 1

0.6

0-5 T T T T
0.5 0.6 0.7 0.8 0.9 1.0

Recall
FIGURE 7: Precision-Recall Curve.

L. F1 SCORE COMPARISON

The F1 score, being the harmonic mean of recall and
accuracy, provides a singular metric for assessing a
model's sensitivity to the balance between these two
measures. ResNet50 achieved the highest F1 score of
0.92, as seen in Figure 8, followed by InceptionV3 at
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0.90 and VGG16 at 0.88.

This result underscores ResNet50’s efficacy in
addressing complex multi-class classification
challenges, particularly when several tumor types exhibit
overlapping visual traits. The equilibrium of its F1 score
indicates that the model does not disproportionately
favor one class over another, an essential attribute for
fairness and equity in medical artificial intelligence
applications.

o F1 Score Comparison

0.8 1

0.6 1

F1 Score

0.4 1

0.2 1

0.0

T T T
ResNet50 VGG16 Inceptionv3

FIGURE 8: F1 Score Comparison.
M. AUC SCORE COMPARISON

Examining the bar graph (Figure 9) that compares AUC
ratings further emphasized the efficacy of each model.
ResNet50 achieved an AUC of 0.96, leading the results,
followed by InceptionV3 at 0.94 and VGG16 at 0.93.

Lo AUC Score Comparison

0.8+

0.6 4

AUC

0.4

0.2

0.0-

T T
ResNet50 VGG16 InceptionV3

FIGURE 9: AUC Score Comparison.

These results validate ResNet50’s reliable
performance across many evaluation metrics and
provide substantial evidence of its suitability for clinical
applications. Its durability and flexibility are shown by its
elevated AUC, rapid convergence, low misclassification
rate, and robust precision-recall trade-off.
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FIGURE 10: Tumor Localization via Grad-CAM.

We used the Grad-CAM (Gradient-weighted Class
Activation Mapping) approach to elucidate the decision-
making process of the ResNetl8 classification model.
Grad-CAM superimposes a heatmap over the original
brain MRI, emphasizing the regions most likely to
influence the model’s predictions.

A pre-trained ResNet18 model was used, which was
modified to perform inference on brain MRI images. The
model was set to evaluation mode, and Grad-CAM
visualizations were generated for each input image.
Specifically, gradients were extracted from the last
convolutional layer (i.e., ‘layer4.1.conv2’) relative to the
predicted class. These gradients were pooled and
weighted against the corresponding feature maps to
produce a class-discriminative localization map.

The resulting heatmaps were resized and
superimposed on the original MRI scans, revealing
regions of attention. As shown in Figure 10, the model
focuses primarily on hyperintense regions commonly
associated with gliomas, meningiomas, or pituitary
tumors. In correctly classified cases, the attention maps
align with tumor regions marked by radiologists,
validating both the performance and interpretability of
the deep model.

V. FINDINGS

The comparative examination of three state-of-the-art
deep learning models, ResNet50, InceptionV3, and
VGG-16, revealed crucial insights about their potential
for brain tumor classification using Magnetic Resonance
Imaging (MRI) information. Each model was rated based
on numerous performance measures that include
accuracy, training loss, Flscore, Area Under the Curve
(AUC), confusion matrix analysis, precision-recall trade-
off, and convergence speed.

A. OVERALL MODEL PERFORMANCE

Among all the models evaluated, ResNet50
consistently emerged as the superior architecture.
By the 10th epoch, it achieved a peak classification
accuracy of 98%, surpassing InceptionV3 at 96% and
VGG16 at 95%. The residual learning architecture of
ResNet50 accounts for its remarkable accuracy by
facilitating deeper feature learning while mitigating the
risk of vanishing gradients. Among the four tumor types,
glioma, meningioma, pituitary tumor, and absence of
tumor, its ability to extract complex and distinctive
features was essential for their differentiation.
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B. TRAINING EFFICIENCY AND CONVERGENCE
BEHAVIOR

ResNet50 exhibited the most rapid convergence during
training, therefore reducing the binary cross-entropy
loss from 0.6 to 0.10 compared to 0.12 for InceptionV3
and from 0.15 relative to VGG16. ResNet50 is suitable
for time-sensitive clinical environments where rapid
model training and retraining are essential, since its fast
convergence demonstrates excellent learning dynamics.
The model exhibited few signs of overfitting and
remained stable across epochs.

C. PRECISION, RECALL, AND F1 SCORE

ResNet50 achieved the highest F1 score of 0.92 for
classification quality, indicating an effective equilibrium
between recall and accuracy. InceptionV3 and VGG16
achieved F1 scores of 0.90 and 0.88, respectively. Our
results validate ResNet50’s robustness in addressing
class imbalance and atypical tumor classes, which is
particularly relevant in real-world datasets where these
issues are prevalent.

D. DISCRIMINATORY CAPABILITY AND ROC-AUC
ANALYSIS

The AUC value of 0.96 for ResNet50 clearly
demonstrates its discriminative capability. This statistic
illustrates the model’s efficacy in distinguishing classes
at certain threshold levels. The reliability of ResNet50 in
clinical decision-making contexts, particularly when false
positives or false negatives might have serious
repercussions, was substantiated by its ROC curve,
which consistently remained above the diagonal
baseline.

E. CONFUSION MATRIX INTERPRETATION

The confusion matrix of ResNet50 demonstrated
commendable sensitivity (true positive rate) and
specificity (true negative rate), indicating minimal
misclassifications across all four classes. This
exceptional diagnostic capability indicates the model’s
suitability for incorporation into a Computer-Aided
Diagnosis (CAD) system, therefore assisting radiologists
in accurately identifying brain tumors with little error.

F. PRECISION-RECALL TRADE-OFF

ResNet50 exhibited a robust trade-off curve in the
precision-recall analysis, indicating its ability to preserve
accuracy while maintaining recall. In medical imaging,
strong recall ensures the identification of almost all
tumor cases, while high accuracy minimizes
unnecessary false alarms that might lead to unwarranted
therapeutic interventions, making this aspect very
important.

G. MODEL EFFICIENCY AND PRACTICAL

APPLICABILITY

Despite all three models using pre-trained CNNs and
transfer learning, ResNet50 yielded a compelling
combination of efficiency and performance. Despite
being a more complex network, fine-tuning techniques
contributed to a reduction in computing expenses. Its
minimal error rates and high accuracy, coupled with
rapid training durations, make it an excellent option for
deployment in real-time, resource-constrained clinical
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settings.

Table Il presents the comparative outcomes across all
primary performance metrics.

The findings of this study indicate that ResNet50 is
the most compelling design for multi-class brain tumor
classification based on MRI. Its effectiveness across all
metrics designates it as a reliable and efficacious
approach for clinical implementation. Its potential as a
foundational model in forthcoming Al-assisted
diagnostic systems is underscored by its resistance to
overfitting, equitable classification across categories,
and suitability for resource-constrained settings.

TABLE 2: Performance Comparison of Deep Learning Models for
Brain Tumor Detection

Metric ResNet50 | InceptionV3 |[VGG16
Final 98 96 95
Accuracy (%)

Final Loss 0.10 0.12 0.15
F1 Score 0.92 0.90 0.88
AUC Score 0.96 0.94 0.93
Precision- High Moderate-High [Modera
Recall te
Convergence Fastest Moderate |Slower
Speed

Confusion Excellent Good Good
Matrix Result | (few errors)

VI. CONCLUSION
This study conducted a comparative examination of
three deep learning models, ResNet50, VGG16, and
InceptionV3, with transfer learning utilizing MRI data for
brain tumor detection and classification, also used Grad-
CAM the explainable artificial intelligence (XAl) strategy,
to boost model transparency and interpretability.
ResNet50 has much superior accuracy, F1-score, AUC,
and convergence rate compared to the alternatives.
This may be attributed to its residual connections, which
provide more efficient gradient propagation and deeper
representation learning, both crucial in medical image
processing, where minor differences are significant.
Future research will aim to enhance the model’s
generalizability across multi-center datasets with varying
image collection protocols. Additionally, enhancing
interpretability for physicians might include the use of
explainable artificial intelligence (XAl) systems such as
Integrated Gradiant (IG), DeepLIFT, and Score-CAM.
Moreover, the model may be further extended for multi-
class classification, including several tumor grades or
the segmentation of tumor regions and the size of the
tumor. An alternative approach to facilitate system
deployment in remote and resource-constrained
environments is the integration with mobile platforms
and real-time cloud-based inference engines.
DATA AVAILABILITY
The datasets included in this study is combination of
SARTAJ, Figshare, Br35h, and publicly accessible and
widely employed in brain tumor detection ! studies. The
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dataset is open-source and is used in compliance with
its respective data usage policies.

Lhttps:/mww.kaggle.com/datasets/masoudnickparvar/b
rain-tumor-mri-dataset
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