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ABSTRACT 

Accurate brain tumor detection remains critical yet challenging due to diagnostic complexity and variability in 

MRI interpretation. This study proposes a deep learning approach for automated multi-class brain tumor 

classification using transfer learning (TL). Three pre-trained CNN models, ResNet50, InceptionV3, and VGG16, 

were adapted and evaluated on a curated MRI dataset of 7,000+ images. Preprocessing, feature extraction, fine-

tuning, and integration of Explainable AI (Grad-CAM, LIME, SHAP) ensured robust and interpretable results. 

ResNet50 achieved the highest performance with 98% accuracy, 0.92 F1-score, and 0.96 AUC, outperforming 

the other models across all metrics, with strong convergence and minimal misclassification. ResNet50’s 

architecture enabled deeper feature learning and improved generalization. Explainable AI visualizations 

confirmed model focus on tumor-relevant MRI regions, enhancing clinical interpretability. The findings position 

ResNet50 as an effective and explainable solution for MRI-based brain tumor classification, suitable for future 

real-world deployment and further expansion to mobile and multi-center applications. 

 

INDEX TERMS: Brain Tumor Detection, Deep Learning, ResNet50, MRI Classification, CNN, Medical 

Imaging, Binary Classification, Tumor Diagnosis. 

 

I. INTRODUCTION 

Brain tumors are among the most critical neurological 

disorders, characterized by aberrant development 

of cells inside or around the brain that perturb normal 

brain function [ 1]. Depending on their nature, brain 

tumors are often classed into benign (non-cancerous 

and slow-growing) and malignant (cancerous and 

aggressive) [2]. According to the International Agency 

for Research on Cancer (IARC), more than 126,000 

new brain tumor cases are diagnosed annually 

worldwide, with over 97,000 deaths attributed to the 

disease each year. The World Health Organization 

(WHO) further projects a 5% annual increase in brain 

tumor cases globally, making early detection and 

effective treatment increasingly vital [3; 4].  

The early and correct diagnosis of brain tumors 

plays a vital role in enhancing patient outcomes, 

reducing mortality rates, and planning personalized 

treatment strategies [5]. Magnetic Resonance Imaging 

(MRI) has evolved as a key imaging technique owing to 

its non-invasive quality and ability to obtain superior 

resolution soft-tissue contrasts. However, the manual 

interpretation of MRI images by radiologists is a time-

consuming process that is susceptible to diagnostic 

inconsistencies, inter-observer variability, and potential 

oversight, especially when dealing with large imaging 

datasets [6; 7]. 

In the past couple of years, the rise of Artificial 

Intelligence (AI), notably deep learning (DL), has 

transformed the landscape of medical image analysis 

[8]. AI models are now capable of learning complex, non-

linear representations from raw image data, thus 

assisting healthcare professionals in decision-making 

processes [9]. Among these models, Convolutional 

Neural Networks (CNNs) have shown remarkable 

performance in a broad variety of computer vision 

applications, including classification of images, 

segmentation of images, and object recognition in 

images. Their success in the biomedical domain has led 

to promising outcomes in brain tumor classification, 

localization, and segmentation [10]. 

However, deep CNNs require substantial labeled data 

and computational resources for training from scratch, 

which poses a significant limitation in medical imaging, 

where curated and annotated datasets are limited due to 

privacy concerns, expert availability, and patient 

variability. To overcome this challenge, transfer learning 

has emerged as a strong alternative. Transfer learning 

facilitates the use of pretrained deep learning (DL) 

models, generally developed on massive datasets like 

ImageNet, to be fine-tuned or adapted for specific 

medical tasks with minimal training data and 

computational cost. 
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Recent investigations have examined the use of CNN 

models such as VGG-16, ResNet, Inception, and hybrid 

models for the classification of brain tumors. For 

example, InceptionV3 was used with ensemble 

classifiers to achieve high accuracy on brain MRI scans. 

A CNN-SVM combination was employed and achieved 

over 95% classification accuracy. The fine-tuned 

versions of VGG and ResNet were used to improve 

performance. These studies confirm the viability of DL-

based methods but often focus on binary classification 

(tumor vs. no tumor) or evaluate a single model 

architecture in isolation [11; 12]. 

Moreover, there are several remaining limitations in 

existing literature: 

• Lack of comparative analysis across multiple 

pretrained CNN architectures using a consistent 

dataset and evaluation framework. 

• Absence of multi-class classification studies that 

distinguish between glioma, meningioma, pituitary 

tumor, and no tumor categories, which is essential 

for real-world clinical deployment. 

• Minimal investigation into the impact of different 

transfer learning strategies (i.e., feature extraction vs. 

finetuning) under the same experimental setup. 

• Limited exploration of resource-efficient models 

suitable for deployment in hospitals with constrained 

computing environments. 

 
A. MOTIVATION AND OBJECTIVE 

This work intends to avert the gaps by setting up a 

transfer learning-based deep learning framework that 

applies and compares three state-of-the-art pre-

trained CNN architectures, ResNet-50, InceptionV3, 

and VGG-16 for multi-class brain tumor classification. 

The models are evaluated using a comprehensive MRI 

dataset obtained from multiple open-access sources, 

including Br35H, SARTAJ, and Figshare, containing 

over 7,000 labeled images. Both feature extraction and 

fine-tuning strategies are employed to investigate the 

effect of transfer learning depth on classification 

performance.  

Through extensive experimentation and evaluation 

using metrics such as F1-score, accuracy, precision, 

and recall, the research seeks to discover the optimum 

model configuration for real-world deployment. The 

overarching goal is to build an automated, accurate, and 

resource-efficient computer-aided diagnostic (CAD) 

mechanism for the prompt identification and 

categorization of brain tumors, thereby reducing 

radiologists’ workload and enhancing diagnostic 

confidence in clinical environments. 

 
B. KEY CONTRIBUTIONS 

The significant advancements of this work are outlined 

as follows: 

1) Development of a Transfer Learning 

Framework: A robust and scalable deep learning 

system is provided for diagnosing brain cancers from 

MRI images, utilizing transfer learning on pre-trained 

CNN architectures, ResNet-50, InceptionV3, and 

VGG-16. 

2) Multi-Class Brain Tumor Classification: The 

study addresses a four-class classification problem 

involving gliomas brain tumor, meningiomas brain 

tumor, pituitary tumors, and no brain tumor 

categories. This enhances the clinical relevance of 

the proposed system beyond binary classification. 

3) Comparative Analysis of Transfer Learning 

Strategies: Both feature extraction and fine-tuning 

techniques are implemented and analyzed under the 

same experimental settings to assess their 

effectiveness on medical image classification tasks. 

4) Utilization of a Large and Diverse Dataset: A 

comprehensive brain MRI dataset comprising over 

7,000 labeled images from multiple publicly available 

sources (Br35H, SARTAJ, and Fig-share) is curated 

and used for training, validation, and testing. 

5) Performance Evaluation Using Multiple 

Metrics: The models are tested using important 

classification metrics that involve precision, recall, 

F1-score, and accuracy, along with confusion 

matrices for detailed performance assessment. 

6) Design of a Resource-Efficient AI Solution: 

The research demonstrates that high-performance 

classification can be achieved without training 

models from scratch, making the proposed solution 

viable for deployment in resource-constrained clinical 

environments. 

7) Key feature identification using XAI: To 

improve the transparency and interpretability of the 

model, the Explainable AI (XAI) Grad-CAM model is 

used, which has generated heat maps of MRI 

images that highlight the regions of the brain tumor. 

The rest of this work is organized as follows: Section II 

analyzes relevant work on brain tumor detection using 

machine learning and deep learning, noting gaps in the 

field. Section III explains the suggested technique, 

including dataset preparation, transfer learning 

methodologies (feature extraction vs. fine-tuning), and 

model architectures (ResNet50, InceptionV3, VGG16). 

Section IV describes the experimental setup, evaluation 

metrics, and hardware configuration. Section V 

presents the results, with a  comparative analysis of 

model performance across accuracy, loss, F1-score, 

and AUC. Finally, Section VI concludes the study, 

discusses clinical implications, and suggests future 

directions. 

 
II. RELATED WORK 

Over the last decade, the integration of Artificial 

Intelligence (AI) technologies, notably Machine Learning 

(ML) and Deep Learning (DL), into medical imaging has 

significantly transformed brain tumor detection and 

classification methodologies. These innovations have 

brought promising advancements in terms of diagnostic 

automation, accuracy, and efficiency. However, despite 

the increasing adoption of AI in neuroimaging, several 
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persistent limitations in current research impede 

widespread clinical adoption, including poor model 

generalizability, lack of interpretability, computational 

inefficiencies, and limited scalability to real-world 

medical environments. 

Initial approaches in this domain largely relied on 

traditional machine learning methods applied to 

handcrafted features extracted from MRI images. For 

instance, the study Design and Analysis for 

Advancements in Brain Tumor Detection Model by using 

Machine Learning (ML) Techniques employed classical 

ML algorithms to process and classify MRI scans. 

Although these models demonstrated a baseline 

capacity to differentiate between tumor types, they 

struggled with low segmentation precision, high false 

positive rates, and poor adaptability across datasets 

with different acquisition parameters [12]. These 

limitations underscore the challenges posed by manual 

feature engineering and rule-based classification 

strategies in complex imaging tasks. 

To systematically assess developments in this 

domain, several literature reviews and meta-analyses 

have been conducted. The Systematic Literature 

Review on ML and DL from 2013 to 2023 compiles a 

decade’s worth of studies and reveals a heavy 

dependence on annotated datasets, inconsistent 

imaging protocols, and a lack of standardized evaluation 

benchmarks. These issues severely limit model 

reproducibility and generalization, particularly when 

deployed across diverse clinical institutions [13]. 

Moreover, survey-based studies such as Brain Tumor 

Identification and Classification Using Machine Learning 

(ML): An In-Depth Survey and Brain Tumor Identification 

Using Machine Learning (ML) have highlighted the 

evolution of ML in neuro-oncology while identifying 

several inherent limitations. These include high intra-

class variance due to morphological differences among 

tumor types, inter-scanner variability, and the time-

consuming nature of manual diagnostic processes. 

These studies emphasize that traditional ML systems are 

often error-prone and inefficient for real-time decision-

making, particularly in resource-limited clinical 

environments [14; 15]. 

The transition to deep learning marked a 

significant leap in model performance, particularly for 

feature extraction and classification by using 

convolutional neural networks (CNNs). Nonetheless, 

several DL-based studies exhibit shortcomings. For 

instance, works such as Classification of Brain Tumor 

Detection Techniques: A Review and Empowering 

Healthcare with AI introduced hybrid AI approaches that 

combine multiple ML/DL models. While these 

architectures yielded improved accuracy, they suffered 

from increased model complexity, higher computational 

costs, and difficulty in deployment due to hardware 

constraints and the requirement for large annotated 

datasets [16; 17]. 

Other integrative studies, like Brain Tumor Detection: 

Integrating ML and DL, explored dual-pipeline systems 

combining traditional ML with CNN-based classifiers. 

Although these attempts sought to utilize the best of 

both worlds, they resulted in increased training duration, 

limited scalability, and suboptimal performance when 

applied to multi-class tumor classification scenarios [18]. 

Deep learning architectures specifically designed for 

medical image analysis, such as InceptionV3 and 

ResNet-50, have demonstrated state-of-the-art results 

in tumor classification tasks. For example, the work An 

Inception V3-Based Glioma Brain Tumor Detection in 

MRI Images leveraged deep CNNs for detecting gliomas 

with high accuracy. However, the model required 

extensive hyperparameter tuning and access to high-

quality, annotated data, making it unsuitable for 

deployment in low-resource hospitals [16]. Similarly, 

Deep Learning-Enhanced MRI for Brain Tumor 

Detection showcased improved feature learning through 

DL but faced overfitting issues due to limited sample 

diversity and a lack of interpretability mechanisms [19]. 

Further, the study Optimizing Brain Tumor 

Classification with ResNet-50 Feature Extraction 

examined the effectiveness of residual networks in 

extracting hierarchical features from MRI data. Despite 

achieving impressive accuracy metrics, the 

computational demands of ResNet-50 present a 

practical barrier to its clinical application, particularly in 

rural or under-resourced settings [6]. 

Comparative analyses, such as A Comparative Study 

of DL vs. ML, clearly show the superiority of deep 

learning in terms of raw performance but also expose 

concerns regarding training time, memory consumption, 

and lack of transparency in decision-making processes. 

These limitations hinder clinical trust and adoption, 

especially when models are treated as black-box 

systems [17]. 

The problem of data imbalance and generalization is 

also prominent in studies like Identification of 

Challenges and Limitations in Detection and 

Segmentation of Brain Tumors. These works identify key 

challenges, including skewed class distributions (e.g., 

more glioma cases than meningioma), segmentation 

inaccuracies, and a lack of robust evaluation 

frameworks that cover both tumor detection and multi-

class classification [20]. 

To improve upon traditional and deep learning 

approaches, hybrid models have also been introduced. 

Brain Tumor Detection Using Hybrid Machine Learning 

Models proposes an ensemble-based ML approach to 

enhance predictive accuracy. While performance 

improvements were noted, the added complexity and 

extended training requirements complicate clinical 

deployment timelines and maintenance cycles [18]. 

From this extensive literature review, it becomes  
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Evident that most existing studies focus on binary 

classification (tumor vs. no tumor), evaluate a single 

network architecture in isolation, or fail to investigate 

different transfer learning strategies comprehensively. 

More critically, very few works address the problem of 

computational feasibility in real-world clinical 

workflows, especially those involving high-resolution 

images and multi-class tumor scenarios [19; 20]. To 

address these gaps, our proposed research introduces 

a robust and unified transfer learning framework that: 

• Performs four-class categorization spanning 

gliomas, meningiomas, pituitary tumor and no tumor 

categories. 

• Evaluates and compares three state-of-the-art 

pretrained CNN architectures: ResNet-50, 

InceptionV3, and VGG-16. 

• Benchmarks two core transfer learning strategies, 

feature extraction and fine-tuning, under a uniform 

experimental protocol. 

• Emphasizes computational efficiency, thereby 

enabling practical deployment in both well-equipped 

and resource-constrained clinical environments. 

This work aims not only to improve classification 

performance but also to bridge the translational gap 

between model development and clinical application. 

Our approach incorporates real-world constraints and 

focuses on generalizability, interpretability, and 

scalability to ensure relevance and impact in actual 

diagnostic settings, as shown in Table I. 

 
III. SYSTEM METHODOLOGY 

This section elaborates on the full technique utilized for 

the creation of a transfer learning-based brain tumor 

classification system employing deep convolutional 

neural networks (CNNs). The proposed methodology 

tries to solve the shortcomings mentioned in previous 

techniques by using the capabilities of three pre-trained 

models, ResNet-50, InceptionV3, and VGG-16 on a 

large-scale, multi-class MRI dataset. The methodology 

is composed of several stages: data acquisition and 

preprocessing, architecture adaptation, transfer learning 

strategy, training algorithms, optimization methods, 

performance evaluation, and integration of Explainable 

AI (XAI) for model interpretability. 
A. OVERVIEW OF THE PROPOSED FRAMEWORK 

The proposed system consists of an end-to-end deep 

learning pipeline designed for the classification of brain 

MRI images into four diagnostic categories: gliomas, 

meningiomas, pituitary tumors, and no tumor. Each 

input image undergoes a standardized preprocessing 

phase before being passed into one of the selected pre-

trained CNN architectures. The models are adapted 

TABLE 1: Comparison of Existing Work vs. Proposed Methodology 

Study / Reference Limitations Identified Our Proposed Solution 

Design and Analysis for 
Advancements in Brain Tumor 
Detection [12] 

Low segmentation accuracy; high 
false positives 

ResNet50, InceptionV3, and VGG-16 
with robust feature learning and 
reduced false detection. 

Systematic Literature Review on 
ML and DL (2013–2023) [13] 

Heavy reliance on labeled data; 
inconsistent quality 

Transfer learning with pre-trained 
models lowers annotation 
dependency 

Brain Tumor Detection Using 
Machine Learning: A 
Comprehensive Survey [14] 

Morphological variation and imaging 
inconsistency 

Multi-class classification across four 
tumor types improves generalizability 

Brain Tumour Detection Using 
Machine Learning [15] 

Time-consuming manual analysis; 
prone to error 

End-to-end automated deep learning 
classification 

Classification of Brain Tumor 
Detection Techniques: A Review 
[16] 

Tumor variability impacts detection 
accuracy 

CNN models trained on diverse 
and augmented datasets 

Empowering Healthcare with AI 
[17] 

Limited annotated MRI data; 
overfitting risk 

Combines large public datasets with 
augmentation and regularization 

Brain Tumor Detection: 
Integrating ML and DL [18] 

Complex model integration and 
training duration 

Lightweight architecture and efficient 
transfer learning strategies 

Deep Learning-Enhanced MRI for 
Brain Tumor Detection [19] 

Overfitting on small datasets; poor 
interpretability 

Standardized dataset and 
benchmarking; visual explainability 
planned (e.g., Grad-CAM) 

An InceptionV3-Based Glioma 
Detection [16] 

Requires large annotated data and 
hyperparameter tuning 

Efficient use of public datasets with 
less tuning via transfer learning 

Optimizing Brain Tumor 
Classification with ResNet-50 [6] 

Computational cost limits deployment Balanced performance and efficiency 
in clinical settings using fine-tuning 

A Comparative Study of DL vs. ML 
[17] 

DL models not feasible for low-
resource clinics 

Designed for high accuracy and low 
hardware requirements 

Identification of Challenges in 
Tumor Segmentation [20] 

Class imbalance and segmentation 
errors 

Balanced multi-class dataset and 
evaluation metrics used 

Brain Tumor Detection Using 
Hybrid ML Models [18] 

High complexity and extended 
training time 

Streamlined transfer learning 
framework for quick deployment 
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using transfer learning techniques, either feature 

extraction or fine-tuning, to classify tumors effectively with 

limited training data. To ensure trust and clinical 

acceptance, Explainable AI (XAI) approaches are 

incorporated to bring visibility into the model’s process of 

decision-making. 
B. DATASET DESCRIPTION AND PREPROCESSING 

The MRI dataset employed in this study comprises a 

combination of three publicly available sources: Br35H, 

SARTAJ, and the Fig share repository. These datasets 

contain axial T1-weighted contrast-enhanced (T1W-CE) 

MRI brain images with corresponding annotations 

across four categories. In total, 7,022 images were 

collected and layered into training (70%), validation 

(15%), and test (15%) subsets to ensure a balanced 

evaluation. 

Image preprocessing is critical for standardizing data 

input across different models and includes the following 

steps: 

• Resizing: Images are resized to 224×224 pixels for 

ResNet-50 and VGG-16, and 299×299 pixels for 

InceptionV3 to match the input layer specifications. 

• Normalization: Pixel intensity data is adjusted to 

the [0, 1] range to ensure uniform input. 

• Data Augmentation: Techniques such as 

horizontal/vertical flips, zooming, and random 

rotations are used to artificially increase the dataset 

and enhance generalization. 

• Label Encoding: Class labels are single-hot 

encoded to meet the categorical output format of 

the models. 

 

C. TRANSFER LEARNING STRATEGY 

Transfer learning is leveraged to reuse knowledge 

acquired from models trained on the ImageNet dataset. 

Two approaches are employed: 

1) Feature Extraction: The pre-trained 

convolutional base is frozen, and only the top 

classification layers are retrained on the MRI dataset, 

as shown in Figure 1. This method is computationally 

efficient and less prone to overfitting. 

2) Fine-Tuning: A portion of the higher-level 

convolutional layers is unfrozen and retrained 

alongside the classifier. This allows the model to 

learn domain-specific features relevant to MRI data, 

offering better performance when the training data is 

moderately sized. 

 

 
FIGURE 1: Samples of datasets used in training and testing. 

D. MODEL ARCHITECTURE ADAPTATION 

In this study, three widely recognized pre-trained 

FIGURE 2: Adapted architectures of VGG-16, ResNet-50, and InceptionV3 with transfer learning classifier heads. 
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Convolutional Neural Network (CNN) architectures, 

Res-Net-50, VGG-16, and InceptionV3, are adapted to 

perform multiclass classification of brain tumors. These 

designs are chosen for their shown efficacy in large-

scale visual identification challenges and their capacity 

to generalize to medical imaging domains via transfer 

learning, as seen in Figure 2. 

The VGG-16 architecture is a 16-layer deep CNN that 

employs a simple and consistent design pattern of 

stacked three-by-three 3x3 convolutional layers, 

succeeded by max-pooling layers. It is known for its 

depth and uniform structure, which makes it both 

interpretable and effective for transfer learning. In this 

work, the original classifier head of VGG-16 is removed 

and replaced with a custom classification block 

consisting of a Flatten layer, a fully connected A dense 

layer comprising 512 units with ReLU activation, 

followed by a Dropout layer (rate 0.5) to mitigate 

overfitting, and concluding with a final dense layer 

including 4 output neurons and softmax activation to 

support multi-class prediction. 

The ResNet-50 deep residual network model is a 50-

layer network that introduces identity-based skip 

connections, allowing gradients to bypass one or more 

layers during backpropagation. This solution directly 

tackles the vanishing gradient issue that often impacts 

deep neural networks. By facilitating the training of far 

deeper structures, ResNet-50 can capture complex and 

abstract features within MRI data. In this framework, the 

final fully connected layers of ResNet-50 are replaced 

with a Global Average Pooling (GAP) layer that follows a 

Dense classification layer with softmax activation to 

produce class probabilities for the four tumor kinds. 

The InceptionV3 architecture is a highly modular CNN 

that utilizes inception modules, which perform multiple 

convolution operations in parallel (e.g., 1×1, 3×3, 5×5) 

within the same layer. This design enhances 

E. TRAINING ALGORITHMS AND OPTIMIZATION 

Two training algorithms are proposed to guide the 

model learning process: 

Algorithm 1: Baseline Transfer Learning 
Classifier (21) This algorithm initializes the pre-
trained CNN with its convolutional base frozen (feature 
extraction), appends a custom classifier head, and trains 
only the added layers using categorical cross-entropy. 

Algorithm 2: Progressive Fine-Tuning Strategy 

(22) This advanced strategy begins by training the 

classifier head (as in Algorithm 1), then progressively 

unfreezes deeper layers of the convolutional base for 

additional training. A small learning rate is maintained to 

avoid destabilizing pretrained weights. This staged 

unfreezing allows gradual domain adaptation. 

Optimization: All models are built on the Adam 

optimizer with a learning rate of η= 10−4, categorical 
cross-entropy loss, and accuracy as the main 

performance indicator. Regularization methods such as 
dropout and early halting are applied to avoid overfitting. 

 

 

F. EXPLAINABLE AI INTEGRATION 

To boost model transparency and interpretability, there 

are several Explainable AI (XAI) strategies, such as 

Grad-CAM, LIME, and SHAP, offering insights into the 

decision-making process of the trained models. The 

description of each strategy is given below. As our 

dataset is large, LIME and SHAP are computationally 

expensive to handle such a large dataset, Grad-CAM 

the XAI method, is applied in this framework. 

• Grad-CAM (Gradient-weighted Class 

Activation Mapping): This approach provides 

heatmaps that show the areas of the MRI images most 

relevant in the model’s decision-making process. By 

visualizing the importance of specific areas of the 

brain in relation to tumor classification, Grad-CAM 

helps clinicians understand what parts of the MRI 

image the model focuses on. 

• LIME (Local Interpretable Model-agnostic 

Explanations): LIME predicts the model’s behavior 

locally, producing interpretable explanations for 

individual predictions. This can help explain why the 

model classified an image into a particular tumor 
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category, providing insights into specific features that 

drove the classification. 

• SHAP (Shapley Additive Explanations): SHAP 

values decompose the model’s prediction into the 

contribution of each feature (e.g., pixel region) to the 

final classification. This global explanation technique 

helps quantify the importance of various image 

regions across the entire dataset. 

Grad-CAM XAI method is incorporated into the model 

evaluation phase, where it provides visual and 

numerical explanations of the model’s reasoning for 

each prediction, enhancing trust and transparency. 
G. EVALUATION METRICS 

The proposed models are evaluated using: 

• Accuracy: Proportion of correctly categorized 

positive and negative instances on brain magnetic 

resonance images. 

• Precision: Correct True Positive (TP) predictions 

per total predicted True Positive (TP). 

• Recall: Correct True Positive (TP) predictions per 

actual True Positive (TP). 

• F1-Score: Harmonic mean of precision metrics and 

recall metrics. 

• Confusion Matrix: A visual matrix of true labels vs 

predicted labels. 

• XAI Explanation Consistency: Analysis of the 

consistency and reliability of explanations across 

different model runs. 

These metrics ensure a comprehensive evaluation 

across all tumor classes and classification challenges. 

The integration of XAI enables robust performance 

benchmarking, model adaptability for real-world clinical 

deployment, and enhanced interpretability, essential for 

gaining clinical acceptance and ensuring patient safety. 

 
IV. EXPERIMENTAL SETUP 

In this study, we evaluate four deep learning (DL) 

models, CNN, VGG16, ResNet50, and InceptionV3, for 

brain tumor detection using a publicly available MRI 

brain tumor dataset. Below are the details of the 

experimental setup, including dataset description, model 

training, and evaluation procedure. 
A. DATASET DESCRIPTION 

The dataset employed in this work is the Brain MRI 

images Dataset, which comprises tagged images of 

brain MRIs, with two primary classes: tumor and non-

tumor. The collection comprises pictures of varied 

resolutions and kinds of MRI scans, e.g., T1-weighted 

(T1W), T2-weighted (T2W). The total count of images is 

7022. The photos were separated into training (80%) 

and testing (20%) groups to make sure that the dataset 

was balanced across the classes. 
B. PREPROCESSING 

Before feeding the MRI images into the models, several 

preprocessing steps were performed: 

• Resizing: All the images were scaled to 224x224 

pixels to satisfy the input needs of the models. 

• Normalization: The pixel values of the images 

were standardized to the range [0, 1] to accelerate the 

training process and increase convergence. 

• Augmentation: To strengthen the durability of the 

models and minimize overfitting, data augmentation 

methods such as random rotation, flipping, and 

zooming were added to the training set. 
C. MODEL ARCHITECTURE AND HYPERPARAMETERS 

A basic convolutional neural network (CNN) model 

consists of 3 convolutional layers, followed by max-

pooling, and a fully connected layer for classification, 

which provides the basis for different models used in the 

framework. Resnet-50, VGG-16, and Inception-V3 

architectures of CNN were used for the comparison: 

• VGG16: A deeper network with 16 layers 

comprised of convolutional layers followed by fully 

linked layers. Pre-trained weights from ImageNet 

were utilized to fine-tune the model (23). 

• ResNet50: A residual network with 50 layers was 

designed to handle the issue of the vanishing 

gradient. It includes skip connections to allow deeper 

models to be trained (24). 

• InceptionV3: A model designed by Google for 

image classification. It uses auxiliary classifiers and 

factorized convolutions, which make it more efficient 

in terms of both speed and accuracy (25). 

The following hyperparameters were used across all 

models: 

• Learning Rate: 0.0001 for all models. 

• Batch Size: 32 images are in a single batch. 

• Epochs: 50 epochs were used to train the model. 

• Optimizer: Adam optimizer with a learning rate 

decay of 0.9. 

• Loss Function: Categorical Cross-Entropy was 

employed as the loss function for multiclass 

classification. 
D. TRAINING AND EVALUATION 

Each model was trained on the training set and 

evaluated on the testing set using several performance 

metrics: 

• Accuracy: The proportion of correctly 

categorized brain magnetic resonance images. 

• Precision: Correct predictions of true positive (TP) 

per total of predicted true positives (TP) and False 

negative (FN). 

• Recall: The correct predictions of True Positive 

(TP) per actual True Positive (TP). 

• F1-Score: Harmonic mean of precision metrics 

and recall metrics. 

• Area Under the ROC Curve (AUC): A measure of 

the model’s ability to discriminate between the 

classes. 

The training was performed on a machine with an 

NVIDIA Tesla V100 GPU, which accelerated the training 

of the models. 
E. EVALUATION METRICS AND VALIDATION 

The models were evaluated using the following: 

• Confusion Matrix: To understand the distribution 

of True Positives (TP), False Positives (FP), True 
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Negatives (TN), and False Negatives (FN) for each 

model. 

• ROC Curve: A graphical representation of the true 

positive rate against the false positive rate, used to 

visualize the performance across different 

thresholds. 

• Loss Curve: To observe the convergence behavior 

and the extent of overfitting during training. 

• Precision-Recall Curve: To assess the balance 

between precision and recall, especially in cases of 

imbalanced datasets. 
F. HARDWARE SETUP 

To effectively train and evaluate the proposed deep 

learning models, a high-performance computational 

environment was utilized. The hardware specifications of 

the experimental setup are outlined below: 

• CPU: Intel Core i9-10900K, 10-core processor 

clocked at 3.7 GHz, providing exceptional single-

thread and multi-thread performance suitable for 

parallel data preprocessing and I/O operations. 

• GPU: NVIDIA Tesla V100, equipped with 32GB of 

VRAM, is a contemporary accelerator suitable for 

deep learning tasks. The Tensor cores significantly 

improve matrix multiplication, hence facilitating rapid 

model training and real-time inference. 

• RAM: 64GB DDR4 memory provides sufficient 

capacity for handling large datasets and many model 

instances throughout the training, validation, and 

testing phases. 

• Operating System: Ubuntu 20.04 LTS, the robust 

and widely used Linux version, provides seamless 

interoperability with prominent deep learning 

frameworks such as TensorFlow, PyTorch, and 

Keras. 

This configuration was used to accelerate training 

cycles and eliminate computing limitations. It also 

facilitates the execution of computationally intensive 

activities such as batch loading high-resolution MRI 

images into memory and finetuning deep convolutional 

networks. The GPU proved crucial in expediting gradient 

updates and backpropagation, hence substantially 

reducing training time. 
G. ACCURACY OVER EPOCHS 

An essential metric of a model’s ability to accurately 

classify data is accuracy. Figure 3 illustrates the 

model accuracy of ResNet50, InceptionV3, and VGG16 

during the training process. All models exhibited a 

positive learning trajectory; however, the performance 

trends varied significantly across architectures. 

By the end of the 10th epoch, ResNet50 achieved 

a peak training accuracy of 98%, outperforming 

InceptionV3 (96%) and VGG16 (95%). This superior 

accuracy is directly attributed to the architectural 

advantage of ResNet50, which incorporates residual 

connections. These connections allow the model to 

learn identity mappings, thus minimizing the vanishing 

gradient issue that commonly restricts deep networks. 

Residual learning allows for deeper architectures 

without degradation in performance, facilitating the 

capture of fine-grained features critical for distinguishing 

between tumor types. In contrast, while InceptionV3 

utilizes inception modules to extract multi-scale features 

and VGG16 uses a consistent convolutional structure, 

both fall short in comparison to ResNet50’s feature 

propagation capacity and representational depth. 

 

FIGURE 3: Accuracy Comparison. 

H. LOSS OVER EPOCHS 

Training loss, derived from the binary cross-entropy 

function, quantifies the discrepancy between predicted 

and actual labels. A declining loss curve signifies 

successful learning. As depicted in Figure 4, all models 

demonstrate a steady decrease in loss over epochs, but 

ResNet50 converged significantly faster and to a lower 

value. 

Initially, all models began with a high loss (0.6), but 

ResNet50’s loss sharply declined to 0.10 by the final 

epoch. In comparison, InceptionV3 and VGG16 

plateaued at higher values of 0.12 and 0.15, respectively. 

This rapid convergence in ResNet50 can be attributed to 

its advanced learning capacity, which stems from both 

depth and residual connections that facilitate effective 

feature reuse and error signal propagation. 

The lower loss indicates better model confidence and 

generalization, reducing the likelihood of overfitting or 

underfitting—a crucial factor in medical imaging, where 

data diversity and feature subtlety are pronounced. 

 

FIGURE 4: Loss over Epochs. 

 



 

17 Volume 03, Issue 2, 2025 

 

I. CONFUSION MATRIX (RESNET50) 

The confusion matrix (Figure 5) presents a thorough 

analysis of classification results by comparing 

anticipated labels versus genuine class labels. For multi-

class issues such as brain tumor classification, it is a 

vital diagnostic tool to assess class-specific model 

performance. 

ResNet50’s confusion matrix reveals a high number of 

True Positives (TP) and True Negatives (TN) across 

all four categories: glioma tumor, meningioma tumor, 

pituitary tumor, and no tumor. The little misclassification 

rate highlights its significant sensitivity (capacity to 

identify actual tumor cases) and specificity (ability to 

accurately differentiate non-tumor instances). 

In therapeutic settings, where false negatives may 

delay treatment and false positives might lead to 

unnecessary interventions, this high level of accuracy is 

very crucial. The reliability of ResNet50’s predictions 

indicates its potential as a trustworthy decision-support 

instrument in radiological diagnostics. 
J. ROC CURVE 

The Receiver Operating Characteristic (ROC) curve 

(Figure 6) illustrates the true positive rate in relation to 

the false positive rate across various categorization 

levels. The classification efficacy of a model is visually 

represented as a curve. 

ResNet50 demonstrated exceptional discriminative 

ability between tumor and non-tumor occurrence with an 

AUC (Area Under Curve) score of 0.96. The ROC curve 

demonstrates robust class separation, remaining far 

above the diagonal baseline despite data imbalance. 

In high-stakes medical applications, such high AUC 

values confirm the model’s capacity to distinguish subtle 

variations in MRI scans, which might be imperceptible to 

the human eye, thereby enhancing diagnostic accuracy. 

 

 
 

FIGURE 5: Confusion Matrix. 

 
FIGURE 6: ROC Curve. 

 
K. PRECISION-RECALL CURVE 

The precision-recall curve (Figure 7) gives insights into 

the trade-off between precision (positive predictive 

value) and recall (sensitivity). It is particularly 

informative in cases of class imbalance, which is 

common in medical datasets. 

ResNet50 maintained a consistently high balance 

between precision and recall throughout the range of 

thresholds. The large area under the curve (AUC) 

indicates that the model sustains high precision without 

compromising recall. This is crucial in a medical 

context, as high recall ensures tumor cases are not 

overlooked, while high precision minimizes the rate of 

false alarms. 

Such robustness makes ResNet50 well-suited for 

deployment in environments where the consequences of 

diagnostic errors are significant, such as oncology 

departments and neurological clinics. 

 

 
 

FIGURE 7: Precision-Recall Curve. 
L. F1 SCORE COMPARISON 

The F1 score, being the harmonic mean of recall and 

accuracy, provides a singular metric for assessing a 

model’s sensitivity to the balance between these two 

measures. ResNet50 achieved the highest F1 score of 

0.92, as seen in Figure 8, followed by InceptionV3 at 
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0.90 and VGG16 at 0.88. 

This result underscores ResNet50’s efficacy in 

addressing complex multi-class classification 

challenges, particularly when several tumor types exhibit 

overlapping visual traits. The equilibrium of its F1 score 

indicates that the model does not disproportionately 

favor one class over another, an essential attribute for 

fairness and equity in medical artificial intelligence 

applications. 

 

FIGURE 8: F1 Score Comparison. 

M. AUC SCORE COMPARISON 

Examining the bar graph (Figure 9) that compares AUC 

ratings further emphasized the efficacy of each model. 

ResNet50 achieved an AUC of 0.96, leading the results, 

followed by InceptionV3 at 0.94 and VGG16 at 0.93. 

 
FIGURE 9: AUC Score Comparison. 

These results validate ResNet50’s reliable 

performance across many evaluation metrics and 

provide substantial evidence of its suitability for clinical 

applications. Its durability and flexibility are shown by its 

elevated AUC, rapid convergence, low misclassification 

rate, and robust precision-recall trade-off. 

 

FIGURE 10: Tumor Localization via Grad-CAM. 

 
We used the Grad-CAM (Gradient-weighted Class 

Activation Mapping) approach to elucidate the decision-

making process of the ResNet18 classification model. 

Grad-CAM superimposes a heatmap over the original 

brain MRI, emphasizing the regions most likely to 

influence the model’s predictions. 

A pre-trained ResNet18 model was used, which was 

modified to perform inference on brain MRI images. The 

model was set to evaluation mode, and Grad-CAM 

visualizations were generated for each input image. 

Specifically, gradients were extracted from the last 

convolutional layer (i.e., ‘layer4.1.conv2‘) relative to the 

predicted class. These gradients were pooled and 

weighted against the corresponding feature maps to 

produce a class-discriminative localization map. 

The resulting heatmaps were resized and 

superimposed on the original MRI scans, revealing 

regions of attention. As shown in Figure 10, the model 

focuses primarily on hyperintense regions commonly 

associated with gliomas, meningiomas, or pituitary 

tumors. In correctly classified cases, the attention maps 

align with tumor regions marked by radiologists, 

validating both the performance and interpretability of 

the deep model. 

V. FINDINGS 

The comparative examination of three state-of-the-art 

deep learning models, ResNet50, InceptionV3, and 

VGG-16, revealed crucial insights about their potential 

for brain tumor classification using Magnetic Resonance 

Imaging (MRI) information. Each model was rated based 

on numerous performance measures that include 

accuracy, training loss, F1score, Area Under the Curve 

(AUC), confusion matrix analysis, precision-recall trade-

off, and convergence speed. 
A. OVERALL MODEL PERFORMANCE 

Among all the models evaluated, ResNet50 

consistently emerged as the superior architecture. 

By the 10th epoch, it achieved a peak classification 

accuracy of 98%, surpassing InceptionV3 at 96% and 

VGG16 at 95%. The residual learning architecture of 

ResNet50 accounts for its remarkable accuracy by 

facilitating deeper feature learning while mitigating the 

risk of vanishing gradients. Among the four tumor types, 

glioma, meningioma, pituitary tumor, and absence of 

tumor, its ability to extract complex and distinctive 

features was essential for their differentiation. 
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B. TRAINING EFFICIENCY AND CONVERGENCE 

BEHAVIOR 

ResNet50 exhibited the most rapid convergence during 

training, therefore reducing the binary cross-entropy 

loss from 0.6 to 0.10 compared to 0.12 for InceptionV3 

and from 0.15 relative to VGG16. ResNet50 is suitable 

for time-sensitive clinical environments where rapid 

model training and retraining are essential, since its fast 

convergence demonstrates excellent learning dynamics. 

The model exhibited few signs of overfitting and 

remained stable across epochs. 
C. PRECISION, RECALL, AND F1 SCORE 

ResNet50 achieved the highest F1 score of 0.92 for 

classification quality, indicating an effective equilibrium 

between recall and accuracy. InceptionV3 and VGG16 

achieved F1 scores of 0.90 and 0.88, respectively. Our 

results validate ResNet50’s robustness in addressing 

class imbalance and atypical tumor classes, which is 

particularly relevant in real-world datasets where these 

issues are prevalent. 
D. DISCRIMINATORY CAPABILITY AND ROC-AUC 

ANALYSIS 

The AUC value of 0.96 for ResNet50 clearly 

demonstrates its discriminative capability. This statistic 

illustrates the model’s efficacy in distinguishing classes 

at certain threshold levels. The reliability of ResNet50 in 

clinical decision-making contexts, particularly when false 

positives or false negatives might have serious 

repercussions, was substantiated by its ROC curve, 

which consistently remained above the diagonal 

baseline. 
E. CONFUSION MATRIX INTERPRETATION 

The confusion matrix of ResNet50 demonstrated 

commendable sensitivity (true positive rate) and 

specificity (true negative rate), indicating minimal 

misclassifications across all four classes. This 

exceptional diagnostic capability indicates the model’s 

suitability for incorporation into a Computer-Aided 

Diagnosis (CAD) system, therefore assisting radiologists 

in accurately identifying brain tumors with little error. 
F. PRECISION-RECALL TRADE-OFF 

ResNet50 exhibited a robust trade-off curve in the 

precision-recall analysis, indicating its ability to preserve 

accuracy while maintaining recall. In medical imaging, 

strong recall ensures the identification of almost all 

tumor cases, while high accuracy minimizes 

unnecessary false alarms that might lead to unwarranted 

therapeutic interventions, making this aspect very 

important. 
G. MODEL EFFICIENCY AND PRACTICAL 

APPLICABILITY 

Despite all three models using pre-trained CNNs and 

transfer learning, ResNet50 yielded a compelling 

combination of efficiency and performance. Despite 

being a more complex network, fine-tuning techniques 

contributed to a reduction in computing expenses. Its 

minimal error rates and high accuracy, coupled with 

rapid training durations, make it an excellent option for 

deployment in real-time, resource-constrained clinical 

settings. 

Table II presents the comparative outcomes across all 

primary performance metrics. 

The findings of this study indicate that ResNet50 is 

the most compelling design for multi-class brain tumor 

classification based on MRI. Its effectiveness across all 

metrics designates it as a reliable and efficacious 

approach for clinical implementation. Its potential as a 

foundational model in forthcoming AI-assisted 

diagnostic systems is underscored by its resistance to 

overfitting, equitable classification across categories, 

and suitability for resource-constrained settings. 

TABLE 2: Performance Comparison of Deep Learning Models for 

Brain Tumor Detection 
 

Metric ResNet50 InceptionV3 VGG16 

Final 
Accuracy (%) 

98 96 95 

Final Loss 0.10 0.12 0.15 
F1 Score 0.92 0.90 0.88 
AUC Score 0.96 0.94 0.93 
Precision-
Recall 

High Moderate-High Modera
te 

Convergence 
Speed 

Fastest Moderate Slower 

Confusion 
Matrix Result 

Excellent 
(few errors) 

Good Good 

 

 
VI. CONCLUSION 

This study conducted a comparative examination of 

three deep learning models, ResNet50, VGG16, and 

InceptionV3, with transfer learning utilizing MRI data for 

brain tumor detection and classification, also used Grad-

CAM the explainable artificial intelligence (XAI) strategy, 

to boost model transparency and interpretability. 

ResNet50 has much superior accuracy, F1-score, AUC, 

and convergence rate compared to the alternatives. 

This may be attributed to its residual connections, which 

provide more efficient gradient propagation and deeper 

representation learning, both crucial in medical image 

processing, where minor differences are significant. 

Future research will aim to enhance the model’s 

generalizability across multi-center datasets with varying 

image collection protocols. Additionally, enhancing 

interpretability for physicians might include the use of 

explainable artificial intelligence (XAI) systems such as 

Integrated Gradiant (IG), DeepLIFT, and Score-CAM. 

Moreover, the model may be further extended for multi-

class classification, including several tumor grades or 

the segmentation of tumor regions and the size of the 

tumor. An alternative approach to facilitate system 

deployment in remote and resource-constrained 

environments is the integration with mobile platforms 

and real-time cloud-based inference engines. 
DATA AVAILABILITY 

The datasets included in this study is combination of 

SARTAJ, Figshare, Br35h, and publicly accessible and 

widely employed in brain tumor detection 1 studies. The 
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dataset is open-source and is used in compliance with 

its respective data usage policies. 

1https://www.kaggle.com/datasets/masoudnickparvar/b
rain-tumor-mri-dataset 
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