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ABSTRACT-  

Emerging from years of research and development, the modern era of computing recognizes the Internet of Things (IoT) as the 

most empowering technology to connect the digital and real world. IoT has introduced new advancements that are transforming the 

world, however, it still faces constraints that limit its effectiveness in various application areas, including computing power, 

resource allocation, reliability, and time consumption. Achieving acceptable latency for task operations on IoT devices necessitates 

the appropriate allocation of Mobile Edge Caching device computing resources which should be based on task size, delivery, and 

service latency. It is impossible to handle the billions of data requests originating from a growing number of base stations. This 

research proposes a mechanism for allocating computing resources and caching to facilitate efficient scheduling in cellular 

networks. A game theory approach used to model miniaturization problems has been employed in this work. A wireless network 

system has been analyzed where each node in the system is a participant with its strategies and contributions to achieve the desired 

performance. The simulation results show that the proposed technique has great potential to improve resource allocation. Each IoT 

device increases the number of requests handled by the Mobile Edge Computing(MEC) server in the non-cooperative subgame. 

The proposed system efficiently allocates IoT resources excels in performance and reduces latency. 

 

Index Terms: Internet of Things, Game Theory, Resource Allocation, Mobile Edge Computing  

I. INTRODUCTION 

Mobile networks have experienced rapid growth over the 
past decade, offering multimedia, online gaming, and 
video services. The number of mobile phone users and 
data traffic has exponentially grown [1]. IoT is one of the 
most emerging research driven by the widespread 
adoption of smart technology devices and advancement in 
communication technologies, including 5G. Wireless 
networks are expected to have an abundance of devices 
such as smartphones, portable computing devices, smart 
sensors, and other growing numbers of physical devices. 
These devices spread a large volume of data in the 

network, that’s why networks need high-performance 
computing and a big storage capacity to manage it [2].  

However, despite the seemingly unlimited 
computational capabilities offered by cloud services, this 
paradigm introduces several challenges like trust, 
congestion issues, high transmission costs, and 
prolonged service latency hinder its feasibility in many IoT 
scenarios that require real-time interaction or mobility. 
Mobile Edge Computing (MEC) solved the problem of 
heavy traffic in the network. At the edges of the network 
processing and caching of data are done. MEC consists 
of a single-edge server or group of devices that work 
together to serve mobile users. The MEC is a more 

FIGURE 1: Global mobile devices and connection 
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efficient viable option than the remote cloud because it has 
much lower network latency. In addition, the MEC will be 
able to efficiently explore the computing and storage 
resources available at the edge of the network [3]. Data 
traffic generated by mobile devices all over the globe is 
forecast by ITU as shown in Figure 1. According to the 
studies data traffic rose up to 55% in the decade of 2020 
to 2030. The estimated amount of data in 2025 will be 607 
Exabytes and 5016 Exabytes in 2030(Source: Cisco).  

However, MEC also has some limitations, such as the 
high cost of implementing and maintaining the 
architecture, and the enormous pressure that a complex 
and dynamic IT environment puts on MEC vendors. The 
rational allocation of computing and network resources to 
meet the polarization needs of mobile communications 
under dynamic MEC conditions is extremely challenging 
today [4]. In connection with the IoT, a neural network 
search system based on compound learning has been 
developed. It includes an anomaly classification model at 
the edge and a distributed learning framework for 
combining model parameters at the server to create a 
generic model for all edge regions. This method not only 
reduces data transmission requirements and increases 
latency, but also improves user privacy. Although the 
efficiency was slightly reduced due to the reduced location 
of the edge, accuracy was achieved by creating models 
suitable for different scenarios [5].  

MEC servers also efficiently plan the resources of the 
mobile edge networks by joint caching and computing 
allocation mechanisms. In different environments, base 
stations (BSs) participate to control the computing space 
that can inhabit the MEC server to enhance the quality of 
use of their consumers [6]. Under the condition of mutant 
MEC, the experimental results show that the proposed 
Dynamic Reinforcement Learning Resource Allocation 
(DRLRA) algorithm performs better than the conventional 
algorithm. 5G wireless networks have been attracting 
much attention from academia and industry since the last 
quarter [7]. The biggest challenge is to meet the cost and 
energy consumption data compared to today's networks. 
5G wireless cellular networks will borrow many new 
technologies to support the growth of wireless 
transmission services that are yet to be invented [8]. 
The network segment resource request mediation process 
improves the instantiation, configuration, and scaling of 
network segment resource requests when the client-
provider relationship of 5G segments is broken. Likewise, 
the IoT industry can be optimally restructured to 
accommodate unexpected 5G network traffic. 
Interestingly, IoT Broker offers different functionalities. 

(i) Appropriate selection of IoT Gateway (GW) 
configured to satisfy downstream order data 
request or Quality of Services (QoS) parameters 
(e.g., data accuracy, notification rate). 

(ii)  Measurement of data activity to cover business 
fluctuations, notification rate changes of IOT, and 
changes in QoS parameters during 
request/subscription delivery. 

(iii) Data trading optimization to maximize the 
efficiency of 5G network applications [9].  

Optimizing the allocation of their computing and 

communication resources, a protocol based on four 

specialized domains, and developing an energy-efficient 

design framework to meet the computational silence 

needs while reducing their overall consumption of energy. 

The IoT needs to be properly managed, and network 

performance needs to be improved. In a two-subcaste 

diverse IoT network with limited network coffers, a 

distributed Q-learning supplementary power distribution 

algorithm ensures the fairness of different biases to 

ensure druggies are treated equally [10].  

In recent years, MEC, an efficient computing paradigm, 

has provided abundant computing resources for IoT. 

Overall, deploying MEC servers closer to mobile users 

effectively reduces access latency and the cost of using 

cloud services. Several mobile applications have been 

developed to connect the world of things to the Internet. 

However, to guarantee fair task action latency among IoT 

devices, calculation resources of MEC units need to be 

allocated accordingly based on task size whilst 

considering transmission and service latency. Using deep 

joint caching and computing learning algorithms, the goal 

of this study is to make it possible for manipulators to 

acquire new and challenging skills to solve the issue of 

resource allocation. How to reasonably allocate 

computing resources and network resources to meet the 

needs of mobile devices under the ever-changing 

conditions of MEC has become an important issue today. 

To address this problem, we propose an intelligent deep 

policy based on asset storage and processing learning, 

which can adaptively identify logs and network assets, 

reduce typical overtime, and balance the utilization of 

resources in different MEC conditions. 

We yield algorithms from game theory and drive an 

efficient formula for smart resource allocation. The 

efficiency and accuracy of our driven formula are validated 

by using MATLAB. The tool gives us graphs that can show 

the accuracy of our proposed work with the growth of 

mobile biases and the improvement of communication 

skills and cognition, complex, multifaceted, and 

computationally intensive mobile processors have 

emerged. Due to limited resources, mobile polarization is 

increasingly limited. The research article is arranged as 

follows: Section II discusses the state of art technique 

from the literature. Our proposed model to describe the 

system is in Section III. In Section IV we articulate the 

problems related to the topic. Analysis and discussion of 

the proposed model is reframed in Section V and the 

conclusion of our studies is written in Section VI. 

II.RELATED WORKS 

Resource management algorithms can be distinguished 
based on their approach to resource allocation such as; 
Provision is the act of assigning resources to workloads. 
Allocation is the distribution of resources linking 
competing loads. Modeling provides a framework that 
assists in predicting the resources needed for a given 
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workload [11]. Brokering is the negotiation of resources 
through an agent. Scheduling is organizing resources, 
requests, and events in a timetable that links requirements 
and time intervals for available resources [7]. Resource 
allocation in mobile edge computing using game theory 
faces challenges involving different technologies. 
However, its ability to cover different decision strategies 
helps to improve the decision process for the allocated 
time and objectives [8].  

A game-theoretical approach to solving the attribution 
problem of IoT problems. There are three reasons for 
adopting a game-theoretic approach in this way. First of 
all, users of your application may have different needs and 
interests [12]. Game theory has been used successfully in 
many fields as an effective tool for analyzing the mutual 
influence of multiple actors acting on their interests. No 
application user has an incentive to unilaterally deviate, as 
an incentive-enabled mechanism can be jointly developed 
in an edge computing environment and is a satisfactory 
IoT solution. Second, Game seeks to harness the 
intelligence of individual application users to solve IoT 
problems in a decentralized way [13], [14]. This can 
reduce the high search load for centralized optimal 
solutions. The number of users assigned to the application 
and the number of edge servers available. Finally, 
comparing centralized and distributed game-theoretical 
approaches can quickly find an operating System solution. 
This allows applications to meet the needs of users and 
application providers for a low-latency edge computing 
environment [15]. Additionally, gaming application 
providers must consider capacity constraints such as 
CPU, memory, and bandwidth. etc. Compared to mega 
cloud servers data processing is limited in data centers, 
and edge server’s capabilities are typically shared 
between multiple application vendors. So, the edge server 
must have enough computing capacity for application 
users to this edge server [16].  

MEC is a promising way to expand the computing 
competencies of Western Digital (WD). MEC works 
silently by offloading some or all of the WDs' computing 
tasks to nearby MEC server access points [17]. Through 
MEC, small and low-power WDs can offload their 
computing tasks to access points, and those tasks can 
always be loaded and computed by embedded MEC 
servers. However, once the computational tasks are 
successfully offloaded, the MEC mode can facilitate 
computationally intensive tasks in real-time through both 
the original offset computing and the edge computing of 
the MEC service offloading tasks [18]. All of these are 
connected to the Internet and produce the low-speed 
tracking, dimensional, or robotic data that many 
businesses and end-users routinely require, underscoring 
the need for online coverage techniques in IoT 
enterprises. On the other hand, the number of devices on 
the Internet has recently added a new network factor the 
future of connectivity to "everything" on the Internet. IoT 
"Big Data" focuses on the four V's: Velocity, Variability, 
Volume, and Values. Then we have different data models, 
produced at different rates, which affect the different 
volumes of data that are dumped and used in IoT 
operations. Therefore, it is necessary to consider the latest 

technologies when handling data. The amount of data 
generated by mobile and IoT bias has increased 
significantly. These devices, such as smartphones, 
wearables, and detectors, have limited computing and 
energy resources. The decomposition process and 
inventory of resource-limited bias toward income currently 
face similar limitations [19].  

However, computers are hosted in huge data centers 
located far from the extreme endpoints. In addition, the 
increased amount of changed data places a significant 
burden on network connections. Network functions of IoT 
service layers can also be virtualized. Several global 
standards (such as oneM2M) and personal (such as IBM 
Watson) IoT service sub-box platforms have integrated 
cloud and IoT to provide scalable IoT services using a 
slice sub-box. Data centers can perform complex 
computations and data analysis and are therefore 
responsible for reusing latency-tolerant services 
containing large amounts of storage and computing at the 
head end to improve the processing of edge computing 
tasks [14]. In particular, the IoT bias sniffs large amounts 
of data and transfers their services only to edge servers 
instead of unpacking them directly into balls to reduce the 
required signaling and corresponding energy consumption 
in the decision tree [20]. 

The concept of Multi-Access Edge Computing (MEC), 
as defined by the European Telecommunications 
Standards Institute (ETSI), is gaining traction with practical 
implementations. Given that network slicing and 
virtualization are fundamental to MEC, this discussion also 
incorporates the latest advancements in 3GPP 
technologies. These include mechanisms for slicing IoT 
service resources, which can be deployed on peripheral 
boards [21]. A game-theoretic approach called the Edge 
Resource Allocation (ERA) Game is used to address the 
challenge of pricing edge server resources owned by 
multiple stakeholders. This method delivers a solution that 
satisfies the conditions of a pure Nash equilibrium (PNE) 
for the ERA problem. By leveraging the ERA Game 
framework, the ERA algorithm is designed, allowing the 
system to converge at PNE. Once convergence nears, 
edge servers are divided into distinct groups, prompting 
the activation of the ERA algorithm. The algorithm 
operates concurrently across all edge servers within each 
cluster. It has been demonstrated that the ERA framework 
is a viable model, ensuring at least one PNE based on the 
ERA algorithm [22]. 

Furthermore, vulnerabilities within network processes 
are identified and addressed, emphasizing the importance 
of lifecycle management for resolving such issues. This is 
crucial for safeguarding digital twins and developing 
robust network distribution strategies. The study also 
highlights protective measures to enhance the security of 
Industrial IoT systems. A key innovation lies in applying 
game theory to analyze network security risks, offering 
fresh insights into effectively understanding and mitigating 
information security vulnerabilities in digital twin networks 
[23]. Although mobile edge computing can improve the 
efficiency of Mobile device (MD) applications, the 
simultaneous transmission of MDs can degrade the  
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channel quality. Although the clustering technique is 
used for wireless data transmission, previous 
computational decoding studies rarely used the concept of 
clustering to improve the efficiency of game-theoretic 
decoding [24]. 

A brand-new videotape analytics frame for blockchain-
enabled Internet of autonomous vehicles (IoAV) with MEC 
script in which a videotape offloading and resource 
allocation problem is formulated to reduce the system's 
idleness and maximize the blockchain system's sale 
output. The possibility of an incorrect successive 
interference cancellation (SIC) has been investigated in 
non-orthogonal multiple access (NOMA) based IoT 
systems. An energized effectiveness optimization problem 
has been formulated to pair and allocate the radio 
resource. 

An algorithm dynamic resource management (DDRM) 
was developed to explain the model for sequential 
stochastic decision problems (MDP), using Deep 
Deterministic Policy Gradient (DDPG) to handle, high 
dimensionality of state and action space. Experimental 
results showed that DDRM could effectively decrease task 
arrival rate compared to uniform resource management 
and random resource management algorithms [25], [26]. 
The socialization of resource sharing, value creation, user 
participation, supply-personalization, on-demand use, and 
demand matching in manufacturing run much more clearly 
and quickly. Wider applications of these Application 
management systems are hampered by a lack of open 
architecture, common specifications and standards, 
intelligent perception, and internet connectivity for the 
underlying physical manufacturing resources [27]. A novel 
process model might use fog computing. It brings cloud 
services and computing to the end of the network. 

The IoT landscape consists of connections between 
different network anomalies. Virtual machine (VM) origin 
is far from an isolation scheme, as moving a virtual 
machine in real-time allows you to move an entire running 
task to another virtual machine. Based on this approach, 

Clone Pall and Cloudlet proposed computational 
offloading to Pall by running mobile polar tasks on remote 
virtual machines without programming [28], [29].  MEC 
collaboration in computing and communications is 
proposed by [30] which uses deep reinforcement learning-
based dynamic resources management algorithm to 
lessen the long-term average delay of tasks to improve the 
performance of IoT.  

The content caching mechanism is used to improve 
data delivery and its efficiency. A geographical cluster 
model is design for the retrival of content and algorithms 
are used to fine delays and transmission cost [31]. 
Caching methods are cetegroized based on their location, 
granularity, and coordination mechanisms, highlighting 
their effects on reducing latency and offloading core 
networks [32]. Artificial intelligence is impacting every 
domain in computing, cashing algorithms and techniques 
are also use machine learning and deep learning [33]. The 
[34] use deep learning base algorithms to optimizing 
resource allocation in vehicular networks. The proposed 
deep reinforcement learning model enables vehicles to act 
as intelligent agents that dynamically allocate 
communication resources based on environmental 
feedback and network conditions. 

III. SYSTEM MODEL AND DESCRIPTION 

The system architecture in Figure 2 of this paper has four 
layers: the cloud, the MEC layer, the user, and the IoT 
device  

layer. The IoT device layer includes various gadgets like 
mobile phones, and smart IoT base environments which 
contain sensors and actuators that scan the environment 
and collect raw data. The user layer allows each user to 
control and process the IoT device's data. The MEC layer 
receives all the raw data and performs data pre-
processing and analysis. The output data is reversed back 
to the user or to the cloud for more analysis and future 
use. The user should have an interactive real-time  

TABLE 1: Comparison of recent game-theoretic approaches for resource allocation in MEC-enabled IoT systems. 

Ref Approach/Method Key Idea Strengths Limitations 

[2] Game-Theoretical 
Task Allocation 

Reward-driven for 
cognitive IoT 

Optimized for user-specific 
needs 

Might be complex for 
real-time applications 

[3] Game-Theoretical 
User Allocation 

Edge computing 
environment 

Decentralized control, user 
participation 

Scalability under large 
loads? 

[6] MOACO + RL Multi-objective optimization 
with RL 

Good performance in IIoT Training cost of RL 

[9] DRL-Based 
Resource 
Management 

For Industrial IoT Self-adaptive, high 
performance 

May suffer from 
convergence delay 

[10] Caching & Multicast 
in 5G 

Optimizes BS behavior Better network efficiency Limited real-time 
adaptability 

[14] Edge Intelligence & 
Energy Efficiency 

Combines offloading + 
energy reduction 

Scalable, effective for mobile 
devices 

Needs careful 
balancing 

[22] ERA Game Model Nash Equilibrium-based 
pricing 

Fast convergence, fairness Grouping overhead 
possible 

[25], 
[26] 

DDRM Algorithm 
with DDPG 

Solves high-dimensional 
MDP 

Reduced task arrival delays High training complexity 

[30] DRL-Based MEC 
Task Scheduling 

Optimizes task delay Dynamic & adaptive Initial model training 
required 
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application that shows the data analysis results 
immediately. The MEC layer consists of a group of edge  

computing nodes (ECN), each with several low-power 
computing resources that can store computing devices. 

Each BS is connected to an MEC server which acts as 
a small data center. The BS and the MEC server are in the 

same network and can cache and store content locally. 
This reduces the service latency and network congestion 
as the content is closer to the end users. Video streaming 
is one of the main applications that take advantage of this 
technology. 

TABLE 2: Description of symbols used in the equation. 

Notation Description Notation Description 

BSs Base station 𝑏𝑘 Segments width 

K Number of Base stations 𝜆𝑘 Index 

ECN Edge Computing Nodes 𝜇𝑤 Average Service Rate 

𝑑𝑘 Service delay threshold time 𝐷𝑟
𝑤 Remaining Execution Time 

𝜏𝑘
𝑡ℎ Quality of service requirements 𝐷𝑡

𝑤 Delay Time of edge 

𝑡𝑘
𝑛𝑒𝑡 Represents network delay 𝜂𝑤 Number of Segments 

𝑡𝑘
𝑐𝑜𝑚𝑝

 Initial component delay time 𝜆 Average Arrival Rate 

FIGURE 2: System model with four layers IoT Networks 
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When an end-user requests for a video stream with a 
given bit rate in which the MEC server works, it responds 
to the request first then the requested video stream is 
saved in the MEC server storage. Otherwise, it is 
requested to the cloud, which will take time increase the 
latency in response time, and use network supply to 
provide the desired video. Additionally, if the video is not 
cached at the requested bitrate and the video is cached at 
a higher bitrate, the request can also be satisfied by 
transcoding on the MEC server. 
IV. PROBLEM FORMULATION 

The problem formulation outlines a resource allocation 
strategy in IoT networks supported by MEC. To model 
computing capacity, the system uses Computing 
Resource Blocks (CRBs), while considering base station 
competition and latency constraints. Key parameters, 
including service delay thresholds, network delay, and the 
computing power of Edge Computing Nodes (ECNs), are 
clearly defined and incorporated into the model. 
Transmission latency is derived using Shannon’s 
equation, accounting for time-varying channel conditions, 
and request patterns follow a Poisson distribution to reflect 
realistic traffic behavior. The formulation adopts queuing 
theory to estimate execution delays and system load, 
introducing metrics such as remaining service time and 
task queue length. The optimization challenge is initially 
non-convex but is shown to be convex under certain 
parameter conditions, which are explicitly stated. A game-
theoretic model specifically, a Stackelberg game is 
employed to model the interaction between the MEC 
server and base stations. The proposed solution uses the 
Newton–Raphson method in an iterative algorithm, with 
each step of the algorithm, including initialization, sorting, 
and convergence criteria, thoroughly described to ensure 
reproducibility. The rationale behind selecting this model 
lies in its ability to balance fairness, utility maximization, 
and computational feasibility in a distributed network 
environment. 

The MEC server can distribute Computing resources in 
units called CRBs. Each CBR can offer computing 
services at a rate of µ. Suppose that the storage capacity 
of MEC server is set as 𝑄𝑠  and CRB named as 𝑄𝑐 . 
Moreover, for improving the quality of service the range of 
M is M ∈ {1, 2, ..., M}. Which competes for the partial 
resources of BSs and MEC server of its users. User will 
communicate with their respective BSs through devices. If 
we have M number of users then 𝜆𝑚 is for mth BS users 
request. There are two categories for requesting the 
server one is for video service and other is for data service. 
We know that, 0 ≤ η ≤ 1, this is the presentation of 
proportional relation of video and service request. 
Therefore, the arrival rate of the entire video service 
request to the BS can be expressed as follows 𝜂𝜆𝑚.  

Suppose that there are entirely K BSs identified as 𝑑𝑘 

and k ∈ {1, 2, . . ., K} and W, ECNs assigned by 𝑓𝑤here w 
∈ {1, 2, . . ., W}. Other BSs have dissimilar calculation 
criteria that can be calculated using service lag. For 
example, particular BSs may select the lowest service 
delay at the cost of higher costs, while others may require 
the lowest cost at the cost of longer computations. The 
service delay threshold time  𝑑𝑘 , required to meet the 

quality-of-service requirement is denoted by 𝜏𝑘
𝑡ℎ. In other 

words, the total delay in serving in the segment 𝑑𝑘, given 

as 𝑡𝑘 , must satisfy the requirement  𝑡𝑘 ≤ 𝜏𝑘
𝑡ℎ . Now, the 

total delay for serving of section from BS to 𝑑𝑘,  consists 
of both components, 

𝒕𝒌 = 𝒕𝒌
𝒏𝒆𝒕 + 𝒕𝒌

𝒄𝒐𝒎𝒑
     (1) 

Here the initial component  𝑡𝑘
𝑛𝑒𝑡 represents the network 

delay  𝑡𝑘
𝑐𝑜𝑚𝑝

, which indicates the aggregate adjournment 

of together the delaying time and the service time. 

 The wireless channel involves the mobile edge 
caching and BS as a credible time-varying network, as a 
Finite Markov Channel (FSMC). The arriving SNR is 
shown 𝛾𝑘

𝑤 , whose transition follows a Markov process. 

Therefore, the network latency 𝑡𝑘
𝑛𝑒𝑡  can expressed 

according to the Shannon equation, as, 
𝑜𝑘

𝑏𝑘 
⁄ log(1 + 𝛾𝑘

𝑤 

) where 𝑜𝑘data represents the dimension for the segment, 

and 𝑏𝑘 is the width.  

The data segments of BSS 𝑑𝑘  follow a Poisson division 

with an index 𝜆𝑘, k = {1, 2, . , . ., K}. For edge computation, 
each ECN is considered to have different computing 
power and ECN 𝑓𝑤  is assumed to be able to run 

computation service with an average service rate of 𝜇𝑤. It 

is assumed that one data segment from BSS 𝑑𝑘  is 
configured to serve by ECN 𝑓𝑤 presenting smart contract. 
The calculation time of arc representation segments can 
be divided into two parts: The delay time𝑓𝑤 as part of the 
smart contract. The calculation time of arc representation 
segments can be divided into two parts: The delay time 
𝐷𝑞

𝑤  and 𝐷𝑡
𝑤 , respectively. Therefore, the entire 

computation delay time of the edge𝑡𝑘
𝑐𝑜𝑚𝑝

can be expressed 

as 

𝒕𝒌
𝒄𝒐𝒎𝒑

 = 𝑫𝒒
𝒘 + 𝑫𝒕

𝒘            (1.5) 

The average computation time of the ECN 𝑓𝑤 server data 
segment for the CPU can be calculated from the average 
service frequency, which is 1/µw. Then, equation (2) can 
be updated as follows equation (3) can be written as 

𝒕𝒌
𝒄𝒐𝒎𝒑

 = 𝑫𝒒
𝒘 +

𝟏

𝝁𝒘
  (2) 

𝒕𝒌
𝒄𝒐𝒎𝒑

 = 𝑫𝒓
𝒘 +

𝒏𝒘

𝝁𝒘
   (3) 

where 𝐷𝑟
𝑤 is the remaining execution time of the segment 

on the server 𝑛𝑤  show how many segments in the queue 

moving to the next segment 𝑑𝑘 from the BSs is on time. 
For doing this job first-come, first-served technique is 
used, means each ECN is counted one shared in one time 
in the beginning of the queue. For making ECN load free 
we send the data to the cloud or base station when 
computing is complete for one of it. For convenience, the 
average time for processing is approx. 𝐷𝑟

𝑤, which is shown 
below:  

𝑫𝒓
𝒘 =

𝟏

𝟐
𝝀

𝟏

𝝁
𝒘𝟐

       (4) 

The average arrival rate is the shown as λ and  𝑓𝑤. So, the 

entire delay time of edge calculation can be done on it as 

𝒕𝒌
𝒄𝒐𝒎𝒑

 =
𝟏

𝟐
𝝀

𝟏

𝝁
𝒘𝟐

+
𝒏𝒘

𝝁𝒘
       (5) 
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Currently, the expression of the total serving delay 𝑓𝑤  for 

one BSS segment 𝑑𝑘 by ECN can be expressed as 

𝒕𝒌 =
𝒐𝒌

𝒃𝒌 𝐥𝐨𝐠(𝟏+𝜸𝒌
𝒘)

𝟏

𝟐
𝝀

𝟏

𝝁
𝒘𝟐

+
𝒏𝒘

𝝁𝒘
≤ 𝝉𝒌

𝒕𝒉       (6) 

It shows that the time spent on the validation activity is 
excluded from the absolute value of total time. After 
completing the calculation, the calculation is completed, 
the calculation result should be sent back to ECN 𝑓𝑤 or 
stored in the cloud as soon as the calculation is finished. 
If the calculation results cannot be verified later ECN 𝑓𝑤 
tokens will not be received. But a certain percentage of the 
deposit will be deducted and BSS will be returned. 
However, a percentage of the deposit will be deducted, 
and BSs 𝑑𝑘 

 
TABLE 3: Description of symbols used in the theorem. 
Notation Description Notation Description 

𝑝𝑐 Service Price 𝛼𝑚
𝑐  Weight factors of 

computing 
resource  

𝑞𝑚
𝑐∗

 Amount of CRB 𝛽𝑚
𝑐  Utility function of 

BSs 

     CRB Computer 
Resource Block 

𝛼𝑚
𝑠  Weight factors of 

caching resource 

𝑞𝑚
𝑠  Size Storage 

Capacity 
𝛽𝑚

𝑐  Utility function of 
BSs 

𝑝𝑐 Caching price 𝑜𝑘 Data segments 
dimensions 

𝑈𝑚
𝑐  Quasi-Concave 

Function 
𝐵𝑚(𝑝𝑐) Best Computation 

Price 

 
According to the modeled architecture of the network 

consider which games to allocate computing resources to. 
Consider the optimization problem 𝑞𝑚

𝑐∗ as follows. 

Theorem: if an MEC server advertises its service price 𝑝𝑐, 
the computer resource allocation model is likely to result 
optimally in the number of her CRBs with her 

𝐵𝑚
𝑐 , denoted by 𝑞𝑚

𝑐∗ there is, 

𝒒𝒎
𝒄∗ = [(𝒕𝒕𝒉 − 𝜽𝒅𝒎) (√

𝜶𝒎
𝒄 𝝁

𝜷𝒎
𝒄 𝒑𝒄 − 𝟏)]       (7) 

     with an [ ] ≜  maximum( ⋅, 0).  
 Proof: From the utilization of function  𝐵𝑚

𝑐 , the first 

increase 𝑈𝑚
𝑐  with respect to 𝑞𝑚

𝑐  can be, 
𝝏𝑼𝒎

𝒄

𝝏𝒒𝒎
𝒄 =

𝜶𝒎
𝒄 𝝁

[𝟏+(
𝒒𝒎

𝒄

(𝒕𝒕𝒉−𝜽𝒅𝒎))
⁄ ]

− 𝜷𝒎
𝒄 𝝆𝒄       (8) 

 

also, the alternate outgrowth in it  𝑞𝑚
𝑐  is  

𝝏𝑼𝒎
𝒄

𝝏𝒒𝒎
𝒄 = −

𝟐 𝜶𝒎
𝒄 𝝁

[𝟏+(
𝒒𝒎
𝒄

(𝒕𝒕𝒉−𝜽𝒅𝒎))
⁄ ]𝟑 (𝒕𝒕𝒉−𝜽𝒅𝒎)

       (9) 

 

concerning as 
𝜕2𝑈𝑚

𝑐

𝜕𝑞𝑚
𝑐2⁄ < 0, ∀𝑚𝜖𝑀. therefore, 𝑈𝑚

𝑐  is 

a unique function concerning 𝑞𝑚
𝑐  . 

its highest, i.e., 

𝒒𝒎
𝒄∗ = [(𝒕𝒕𝒉 − 𝜽𝒅𝒎) (√

𝜶𝒎
𝒄 𝝁

𝜷𝒎
𝒄 𝒑𝒄 − 𝟏)]       (10) 

 
 thus, the responses of the BSs, we adjust that the problem 
for the MEC server is still extreme, thus, for the mth BS, 
the index function to show 

∑ (𝒕𝒕𝒉 − 𝜽𝒅𝒎)𝑴
𝒎=𝟏 (√

𝜶𝒎
𝒄 𝝁

𝜷𝒎
𝒄 𝒑𝒄 − 𝟏) ≤ 𝑸𝒄                                                

(11) 

𝑼𝑴𝑬𝑪
𝒄 = ∑ (𝒑𝒄 − 𝒆𝒄)(𝒕𝒕𝒉 − 𝜽𝒅𝒎)𝑴

𝒎=𝟏 [√
𝜶𝒎

𝒄

𝜷𝒎
𝒄 𝒑𝒄 − 𝟏  

 

mth value of participates in the game. 

𝒚𝒎 = {
𝟏,   𝒑𝒄 <

𝜶𝒎
𝒄 𝝁

𝜷𝒎
𝒄

𝟎,     𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
       (12) 

Else (6) With the below index function for the Base station, 
optimization equation (5) is reformulated as   

𝐦𝐚𝐱 𝑼𝑴𝑬𝑪
𝒄 = ∑ 𝒚𝒎(𝒑𝒄 − 𝒆𝒄)(𝒕𝒕𝒉 − 𝜽𝒅𝒎) (√

𝜶𝒎
𝒄 𝝁

𝜷𝒎
𝒄 𝒑𝒄 − 𝟏)𝑴

𝒎=𝟏        

(13) 

𝐦𝐚𝐱 𝑼𝑴𝑬𝑪
𝒄 = ∑ 𝒚𝒎(𝒑𝒄 − 𝒆𝒄)(𝒕𝒕𝒉 − 𝜽𝒅𝒎) (√

𝜶𝒎
𝒄 𝝁

𝜷𝒎
𝒄 𝒑𝒄 − 𝟏)𝑴

𝒎=𝟏 ≤

𝑸𝒄                      𝒚𝒎 ∈ {𝟎, 𝟏} 
 

 
It’s egregious that the below problem is because of the 

index, so it's not a convex problem. Nevertheless, it is not 
hard to prove that problem (7) is convex for a given index 
vector y. Equation (7) therefore assumes that 𝑄𝑐  is 
sufficient for entire BSs to participate to the game. As an 
outcome, all BS pointers are equivalent to 1. 

𝒑𝒄 < (
𝜶𝒎

𝒄 𝝁

𝜷𝒎
𝒄 𝒑𝒄) , ∀𝒎 ∈ 𝑴,          (13.1) 

 
In this statement, the problem is curved and optimal. For 
solving this problem given below hypothesis could be 
follow. The best result of equation (7) pointers 

(i.e. 𝑦𝑚 = 1, ∀𝑚𝜖𝑀) is given by 

𝒑𝒄∗ = 𝐦𝐚𝐱{𝑩𝒎(𝒑𝒄), 𝒑𝒄,𝑳𝑩}         (14) 

where 𝐵𝑀(𝑝𝑐) satisfied  

𝑩𝑴(𝒑𝒄) = 𝐚𝐫𝐠
𝒎𝒂𝒙
𝒑𝒄 𝑼𝑴𝑬𝑪

𝒄 ,   ∀𝒎 = 𝟏, 𝟐, … ,𝑴         (15) 

 

𝒑𝒄,𝑳𝑩 =

[
 
 
 ∑ (𝒕𝒕𝒉−𝜽𝒅𝒎)𝑴

𝒎=𝟏 √
𝜶𝒎
𝒄 𝝁

𝜷𝒎
𝒄

∑ (𝒕𝒕𝒉−𝜽𝒅𝒎)𝑴
𝒎=𝟏 +𝑸𝒄

]
 
 
 

         (16) 

 

Proof 

 In expressed problem (7), we take the first outgrowth of 

𝑼𝑴𝑬𝑪
𝒄 = ∑ (𝒑𝒄 − 𝒆𝒄)(𝒕𝒕𝒉 − 𝜽𝒅𝒎)𝑴

𝒎=𝟏 [√
𝜶𝒎

𝒄

𝜷𝒎
𝒄 𝒑𝒄 − 𝟏         (17) 

 

 
𝝏𝑼𝑴𝑬𝑪

𝒄

𝝏𝒑𝒄 = ∑ (𝒕𝒕𝒉 − 𝜽𝒅𝒎)𝑴
𝒎=𝟏 (

𝟏

𝟐
√

𝜶𝒎
𝒄

𝜷𝒎
𝒄 𝒑𝒄−(𝟏 𝟐⁄ )

)  + ∑ (𝒕𝒕𝒉 −𝑴
𝒎=𝟏

𝜽𝒅𝒎) 𝒆𝒄(
𝟏

𝟐
√

𝜶𝒎
𝒄

𝜷𝒎
𝒄 𝒑𝒄−(𝟑 𝟐⁄ )

) − ∑ (𝒕𝒕𝒉 − 𝜽𝒅𝒎)𝑴
𝒎=𝟏                     (18) 

 

also, the alternate outgrowth with respect to 𝑞𝑚
𝑐  is 
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𝝏𝟐𝑼𝑴𝑬𝑪

𝒄

𝝏𝒑𝒄𝟐
= −∑ (𝒕𝒕𝒉 − 𝜽𝒅𝒎)𝑴

𝒎=𝟏 (
𝟏

𝟒
√

𝜶𝒎
𝒄

𝜷𝒎
𝒄 𝒑𝒄−(𝟑 𝟐⁄ )

) −

∑ (𝒕𝒕𝒉 − 𝜽𝒅𝒎)𝑴
𝒎=𝟏 𝒆𝒄(

𝟑

𝟒
√

𝜶𝒎
𝒄

𝜷𝒎
𝒄 𝒑𝒄−(𝟑 𝟐⁄ )

)                                    (19) 

 

It's obviously seen that (
𝜕2𝑈𝑀𝐸𝐶

𝑐

𝜕𝑝𝑐2 ) < 0, ∀𝑝𝑐 > 0. Thus, 

𝜕𝑈𝑀𝐸𝐶
𝑐

𝜕𝑝𝑐 , this is a monotonically reducing function in the 

interval 0, ∞. Also, as the equation shows, 

𝐥𝐢𝐦
𝒑𝒄→∞

𝝏𝑼𝑴𝑬𝑪
𝒄

𝝏𝒑𝒄 = −∑ (𝒕𝒕𝒉 − 𝜽𝒅𝒎)𝑴
𝒎=𝟏 < 𝟎  and 𝐥𝐢𝐦

𝒑𝒄→𝟎

𝝏𝑼𝑴𝑬𝑪
𝒄

𝝏𝒑𝒄 =

+∞ > 𝟎           (20) 

is always decided. therefore, 𝑈𝑀𝐸𝐶
𝑐  has a definite 

maximum value. is using𝐵𝑀(𝑝𝑐) to indicate the satisfied 
price (13). Based on the following analysis, an algorithm 
named Newton-Raphson is proposed by our model which 
obtain the upcoming value𝐵𝑀(𝑝𝑐).  

The total number of CRBs assigned to each base 
station must be in the capacity of the MEC Server's limited 
processing resources, the computing cost must satisfy 
inequality (8) price calculation. 

𝒑𝑳𝑩 =

[
 
 
 ∑ (𝒕𝒕𝒉−𝜽𝒅𝒎)𝑴

𝒎=𝟏 √
𝜶𝒎
𝒄 𝝁

𝜷𝒎
𝒄

∑ (𝒕𝒕𝒉−𝜽𝒅𝒎)𝑴
𝒎=𝟏 +𝑸𝒄

]
 
 
 
𝟐

         (21) 

Therefore, the optimal hidden cost determined by the 
MEC Server (9) can be attained. Judging from the given 
results, our model is able to work in general situations (7). 
Assuming all BSs are ordered, the algorithm also gives the 
optimal result for the problem. 

Proposed Algorithm 

Algorithm: An iterative algorithm based on the 

Newton–Raphson method 𝐵𝑀(𝑝𝑐) 

Step 1:  Set K=M and 𝑦𝑚 = 1, ∀𝑚 ∈ 𝑀 

Step 2: Sort the K BSs according to 
𝛼𝑚

𝑐 𝜇

𝛽𝑚
𝑐  

             i.e., (
𝛼1

𝑐𝜇

𝛽1
𝑐 > ⋯ >

𝛼𝑀−1
𝑐 𝜇

𝛽𝑀−1
𝑐 >

𝛼𝑀
𝑐 𝜇

𝛽𝑀
𝑐 ) 

Step 3: Compute 𝐵𝑀(𝑝𝑐)   based on 𝑝𝑐,𝑘+1 = 𝑝𝑐,𝑘 −

𝜕𝑈𝑀𝐸𝐶
𝑐

𝜕𝑝𝑐

𝜕2𝑈𝑀𝐸𝐶
𝑐

𝜕𝑝𝑐2⁄  

             𝐵𝑀(𝑝𝑐)  =𝑝𝑐,𝑘 

           𝑝𝐿𝐵 =

[
 
 
 ∑ (𝑡𝑡ℎ−𝜃𝑑𝑚)𝑀

𝑚=1 √
𝛼𝑚

𝑐 𝜇

𝛽𝑚
𝑐

∑ (𝑡𝑡ℎ−𝜃𝑑𝑚)𝑀
𝑚=1 +𝑄𝑐

]
 
 
 
2

 

Step 4: 𝑝𝑐,𝑏𝑒𝑠𝑡 = max {𝐵𝑀(𝑝𝑐), 𝑝𝑐,𝐿𝐵}   

Step 5: Compare the 𝑝𝑐,𝑏𝑒𝑠𝑡 with 
𝛼𝐾

𝑐 𝜇

𝛽𝐾
𝑐 : 

            If 𝑝𝑐,𝑏𝑒𝑠𝑡< 
𝛼𝐾

𝑐 𝜇

𝛽𝐾
𝑐  then  

           go to step 3. 

Step 6: 𝑝𝑐,𝑂𝑝𝑡𝑖𝑚𝑎𝑙 = 𝑝𝑐,𝑏𝑒𝑠𝑡 

The SE realized by the proposed system enables well-
balanced utility usage among the mobile edge caching 
server and numerous IoT base stations. 

   

V. RESULTS AND ANALYSIS 

This section presents the results of our proposed model. 
We simulate our outcomes on MATLAB that give a rich 
and precise yields. While doing simulated the IoT-based 
scenario without explicit clarification, we can observe that 
maximizing the capacity of the MEC server storage for 
more benefits. As it grows, the utility increases, until 
reaching a certain point where further increases do not 
bring any extra advantage. The simulation was conducted 
in an environment consisting of 25 BSs and with a 
calculated computation capacity of 50 all having the same 
Zipf distribution characteristic (τ at 0.5). Every base 
station's request arrival rate is randomly set to average 10 
ms 1 with video service requests comprising half of this 
rate. On average, each BS can cache 500 videos. 
Additionally, as per [29], Each CRB has a service rate of 
0.1 minutes per second, but all 25 BSs have a delay 
tolerance of 60 ms. 

The storage capacity has a major influence on the 
cache price. When it is limited, competition among BSs is 
so furious that the cost of cache is extremely high. 
However, as the storage capacity increases, the cache 
price gradually decreases until reaching an equilibrium 
point (i.e., when pLB ≤ e s / (1 − τ)). Upon attaining this 
point, the cache fee no longer relies on storage capacity 
and remains constant. 

As indicated in Figure 3, given a storage size of 50, 
computation power has a positive effect on MEC server 
utility, raising initially and then stabilizing to a certain value. 
This occurs as more CRBs are available for allocation to 
the BSs. Furthermore, with an increased number of BSs 
and computation level remaining equal, the heightened 
rivalry between BSs causes converged value to grow 
higher.  

 

FIGURE 3:  Influence of cache capacity on utility MEC server for different sets of 
BSs 

This research evaluates the performance of the mobile 
edge caching server against its capacity by presenting 
simulation results. The transmission distance between it 
and its base stations is a randomly generated number 
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between 0 and 10 km, while the rent follows a random 
uniform distribution between 1 and 25. Furthermore, the 
average weight factors for the server and CRBs are α / β 
= 50/0.2 and α s/ βs= 500/0.1, respectively. Figure 4 
shows our findings. 

 

 
FIGURE 4: Variation in Utility MEC Server with computation capacity 

The game-based scheme proposed by Stackelberg is 
compared with other two methods.  
(i) The first one is the YM (Yield Management) Approach 
which sees the MEC server offering discounts on available 
resources increments of 30 regarding cache and 
computation capacity comes with a 5% discount on the 
current price. 

(ii) Second is the greedy scheme, in which MEC acts like 
a monopolist and enhances overly expensive prices. 

 
FIGURE 5: Relative computation capacity behaviour of MEC Server under diverse 

patterns 

 
FIGURE 6:  BSs efficacy with the capability of MEC server 

According to Figures 5 and 6, the utility of MEC servers 
and BSs are determined by three pricing models 
concerning resource capacity, respectively. A greedy 
system allows MEC servers to catch up with Stackelberg's 
game-based system, as MEC servers always offer the 
best prices. Figure  6 proves that the SE completed by the 
suggested system can well balance utility among the MEC 
servers and numerous IoT base stations. 

Figure 7 shows the utility estimation of the MEC server 
when the service speed μ alters from 0.1 to 1 with a step 
size of 0.1. Utility increases by μ. Here's why a larger value 
of μ allows the MEC server to handle more requests 
directly instead of forwarding them to withdrawn servers 
within an acceptable service delay for IoT. Therefore, 
MEC servers can generate more revenue from base 
station requests.  

 
FIGURE 7: Number of IoTs versus the request rate 

This research evaluates the performance of the MEC 
server against its capacity by presenting results. The 
transmission distance between it and its base stations is a 
randomly generated number between 0 and 10 km, while 
the rent follows a random uniform distribution between 1 
and 50. Furthermore, the average weight factors for the 



 

39 Volume 03, Issue 1, 2025 

server and CRBs are α / β = 50/0.2 and αs/ βs= 500/0.1, 
respectively.  
 

VI. CONCLUSION 

Our research proposes a framework named MEC for 
resource allocation servers and base station connections 
to ensure efficient resource planning of IoT cellular 
networks. The proposed algorithm significantly increases 
the system efficiency and reduces the response time. The 
simulation results show the effectiveness of the proposed 
system. In addition, the originality and equilibrium 
connection of the Stackelberg game and the reverse 
induction system are proposed as a solution to the 
resource allocation problem. For future work, we 
encourage you to consider efficient computation offload 
strategies for cross-IoT collaboration. Our future work 
integrates with neural networks for better analysis of the 
system and adds predictive capabilities. Adding 
experimental tests makes it easier for users. Multiple 
optimization objects are another promising direction for 
improving overall network performance and are also 
considered as a new research direction for future 
research. 
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