
Date available online: 23-07-2025
Vol. 3, Issue 1 (January – June 2025)
This is an open-access article.
DOI: https://doi.org/10.24312/ucp-jeit.03.01.515

17 Volume 03, Issue 1, 2025

Microservice Antipatterns: Causes, Detection,
and Refactoring Challenges

Junaid Aziz1, and Ghulam Rasool1
1Department of Computer Science, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan

Corresponding author: Junaid Aziz (e-mail: mjunaidaziz@gmail.com).

ABSTRACT
Microservice antipatterns negatively impact quality, necessitating a thorough understanding of their causes, effects, and solutions.

This study provides a comprehensive review of antipatterns after analyzing 50 studies through a multivocal literature review. Key

findings show that unprepared adoption and team culture are major causes, affecting maintainability, performance, and testing.

Detection techniques are categorized into five groups, with most tools using search-based approaches. Four refactoring strategies

were identified, along with their limitations. The study also highlights research gaps and challenges, guiding future work in

improving detection and refactoring methods to mitigate antipattern effects.

INDEX TERMS: Microservice Architecture; Anti-patterns; Antipatterns Detection; Antipatterns Refactoring

I. INTRODUCTION
Despite the benefits of using Microservice architecture
(MSA), there exist several open challenges, which can be
grouped into two categories: technological and
organizational [1]. Both are critical to the correct
functioning of the system. However, these challenges
may differ slightly when a large existing code base from
monoliths is converted to microservices as compared to
creating microservices from scratch. A study performed
by Alshuqayran et al. [5] on MSA found communication,
deployment operations, security, service discovery, and
performance as major challenges of using microservices.
Similarly, Jamshidi et al. [3] illustrated not only challenges
faced by microservices but also envisioned the
development of common microservice infrastructure
through industry-academia collaboration to tackle such
problems.

Recently, a discussion has emerged about taking a
viewpoint of practitioners on the definition of antipatterns
along with refactoring techniques and tools proposed in
academic literature. Lacerda et al. [4] observed that the
knowledge of developers about antipatterns detection
and refactoring can not only help to improve tools but also
the process of refactoring itself. Tahir et al. [5] also used
data from the Stack Exchange website to identify the gap
between what researchers and developers discuss about
code smells and antipatterns? Based on their
observations, they came to several conclusions: such as
1) most of the antipatterns detection tools only provide
support for a few popular languages, 2) only developers
can evaluate the level of antipatterns in a piece of code.
Tian et al. [6] conducted an exploratory study to take the
viewpoint of developers on architecture antipatterns by
analyzing related discussions on Stack Overflow. Posts
related to different architecture styles including
microservices were extracted and analyzed. Results of
their study indicate that detection and refactoring
solutions must consider the causes of architectural
antipatterns, and practitioners tend to use static code
analysis tools to detect and refactor architectural
antipatterns. Additionally, practitioners are concerned

about the impact of architecture antipatterns on the
performance and maintainability of the system and
advocates for further research in this regard [7].
Moreover, they are also facing a lack of tool support in
this regard. Considering these factors, it is important to
mine the literature and identify all the causes and impact
of antipatterns on microservices. This will help the
community in building appropriate tools not only for
dealing with factors causing antipatterns in microservices
but also to address the concerns of practitioners about
reducing level of different impacts of antipatterns i.e.,
performance on microservice-based applications. This
multivocal literature review (MLR) tries to fill this gap by
consolidating both academic and industrial knowledge.
The objective of this MLR is to capture the state of art and
practice on microservice antipatterns. The following are
the major contributions of this study

• Provide an overview of types, causes, and impact
of microservice antipatterns reported by both
academia and industry

• Outline techniques and tools employed by both
researchers and practitioners for the detection as
well as correction of microservice antipatterns

• Bridge the gap between researchers and
practitioners by revealing deficiencies in existing
techniques and tools along with identifying
potential research opportunities.

The remainder of this paper is arranged as follows. In
Section 2 related work is discussed. Section 3 outlines the
research methodology employed in this study. Section 4
presents the results along with a detailed discussion.
Finally, Section 5 provides the conclusions drawn from
the research.

II. RELATED WORK

There have been few attempts aiming at reviewing the
state-of-the-art and current practices on microservice
antipatterns. An overview of these studies is illustrated
here along with a summary which is shown in Table 1.

Mumtaz et al. [9] performed a mapping study to

18 Volume 03, Issue 1, 2025

discuss different architecture antipatterns detection
techniques and tools. They not only observed the lack of
tools but also highlighted the need for the identification of
software metrics and their thresholds for detecting
microservice antipatterns. As per their recommendations,
the applicability of these techniques and tools should be
based on the software development industry's
perspective. They emphasize doing empirical validations
with real-world projects spanning many areas and
programming languages in this regard.

Taibi et al. [10] identified several agreed microservice
architectural patterns widely adopted and reported
advantages along with disadvantages for each pattern. In
their study, they pointed towards different emerging
issues such as the impact of an increase in the number of
microservices on the quality of the system, choice of most
suitable DevOps tool, the existence of antipatterns, etc.

Ponce et al. [11] conducted MLR and grouped security
antipatterns based on different properties such as
confidentiality, integrity, and authenticity. They also
presented a taxonomy of these antipatterns along with
refactoring. However, a proposition of a tool capable of
automatically detecting and refactoring security
antipatterns in microservice-based applications is lacking
in their work. Besides, empirical validation of their
proposed refactoring solutions is also missing in their
work.
Table 1: Summary of related systematic literature reviews

Study Studies
Reviewed

Study Focus Search
Period

Study
Type

[9] 85 Detection of
architecture
antipatterns

1999-
2019

SMS

[10] 42 Advantages and
disadvantages
of microservice
patterns

2014-
2017

SMS

[11] 58 Security
antipatterns and
refactoring

2014-
2020

MLR

[12] 31 Visualizing Anti-
Patterns in
Microservices at
Runtime

Not
specified

SMS

Abbreviations: MLR, Multivocal literature review; SLR,
Systematic literature review; SGLR, Systematic grey literature
review; SMS, Systematic mapping study; TLR, Tertiary literature

review.

In a mapping study performed by Parker et al. [12], it
is analyzed how anti-patterns in microservices can be
visualized from a dynamic perspective. Based on the
findings, a gap between visualization and detection of
microservice antipatterns is highlighted. It is also found
that among all available tools proposed in academic
literature, no single tool is completely capable of detecting
and visualizing them. However, their study is lacking the
analyses performed on tools contributed from the industry
such as Jaeger [13] and Zipkin [14].

In this study we intend to identify causes as well as
the impact of microservice antipatterns. This information

will help researchers and practitioners in automating the
process of detecting and refactoring microservice
antipatterns as suggested by Tian et al. [6] and Aziz et al.
[8]. Besides, information about techniques and tools
currently applied for detection as well as refactoring of
microservice antipatterns is synthesized. Additionally, the
limitations of such techniques and tools are also
highlighted.

III. RESEARCH METHODOLOGY

This Multivocal Literature Review (MLR) was conducted
following the guidelines established by Garousi et al. [15],
which are derived from the Systematic Literature Review
(SLR) methodology proposed by Kitchenham et al. [16].
In accordance with these guidelines, the MLR process
consists of three key stages: planning, conducting, and
reporting the review. Figure 1 illustrates the steps
involved in each stage. During planning stage, initially we
set a goal for this study which is to capture the state of
the art and practices in identifying types, causes, impact,
detection, and refactoring techniques used for
microservice antipatterns. Then, to make a decision about
including grey literature in this study, a questionnaire is
set (see Table 2) with possible answers either Yes,
Maybe or No as per the guidelines by Garousi et al. [15].
Answer to each question is provided by authors through
consensus. After consolidating the results, majority of
questions are found to be responded in yes. This led us
to the need of conducting a comprehensive MLR instead
of a Systematic literature review to find answers to the
following research questions:

• RQ1: What are the main causes that lead to
antipatterns in microservices?
Rationale - We want to explore the causes of
antipatterns in microservices reported by researchers
and practitioners.

• RQ2: How do antipatterns affect microservices?
Rationale - We want to study the impact of antipatterns
on microservice-based applications specifically on the
process, performance, and people.

• RQ3: What techniques and tools are used for detecting
antipatterns in microservices?
Rationale - We want to learn about techniques and
tools that are used by researchers and practitioners for
the detection of antipatterns in microservices.

• RQ4: What are the refactoring techniques currently
employed to resolve antipatterns in microservices?
Rationale - We want to discover refactoring solutions
proposed by researchers and practitioners to mitigate
the effects of antipatterns in microservices.
During conducting stage, first, search string and data

sources for academic and grey literatures were finalized
as shown in Table 3. Then, authors conducted search for
relevant academic and grey literature studies using
respective data sources. The final selection of studies
was made with consensus whereas conflicts were
resolved through the mediation of another researcher.
Following steps were performed for the search and
selection of primary studies:

19 Volume 03, Issue 1, 2025

Figure 1: Steps followed for MLR

Table 2: Questionnaire used for including grey literature
Question Response

Is academic literature not enough to provide solution for the research problem? Yes

Is quality of evidence generated from academic literature lacking? Maybe

Is finding context of the research problem in relation to practice necessary? Maybe

Is this an attempt to validate research outcomes with experiences of practitioners or vice versa? Yes

Is this an attempt to support research findings with practical experiences? Yes

Is insights gained from academic and grey literature studies useful for one or both communities? Yes

Is there an interest shown by practitioners in research problem through large number of
contributions?

Yes

Step1 — Search process: For academic literature when
we ran the search string, it provided 1032 results whereas
for grey literature (see Table 3), it yielded 190,000 results
on Google and 101,000 on Bing as shown on top of
results page. DuckDuckGo was not providing this
information on its results page. Initially, we limited our
review of these results by title and abstract to the first 10
pages on every search engine. Afterwards, we gradually
moved to the results on other pages until we found that at
least half of the results on a page were not pertinent for
this research. Duplicate results were also discarded at
this stage.

Step2 — Quality assessment: The quality of the
selected academic studies was assessed using the
formula (1) opted by Ahmad et al. [17]. This formula is
based on the recommendations presented in [18] for the
qualitative assessment of selected studies. To calculate
the quality score, the formula uses five general (i.e., QA1
to QA5) and five specialized assessment elements (i.e.,
QA6 to QA10) mentioned in Table 5. Since specific
contributions of a study are more important than general
factors for assessment, therefore, they are assigned 75%
weight. An academic study was included if its
accumulative quality score was greater than or equal to

1.5.

𝑄𝑢𝑎𝑙𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 = [
∑ 5

𝐺=1

5
 + (

∑ 5
𝑆=1

5
 × 3)] (1)

 The quality of grey literature was assessed using the
criteria suggested by Garousi et al. [15] as specified in
Table 4. Every item of the criteria was assessed one by
one for each study by the authors.
After consolidating the results, a grey literature study with
a score of 8 or more (set through consensus) was
included in the final list of primary studies with decent
quality and rest were excluded. This provided us 33
academic (see Table A.2 in Appendix A) and 15 grey
literature studies (see Table A.1 in Appendix A). After
performing forward and backward snowballing on these
studies, 2 further studies were found only for academic
literature. We collaboratively extracted and encoded the
necessary data from each of the selected primary studies
using open and selective coding [69]. Initially, we
extracted the metadata such as name, publication year,
publication type (for academic literature) and contribution
type (for grey literature). Table 6 provides a precise view
of a complete list of defined metadata used in this study.

Table 3: Search string and data sources used in this MLR

Literature Data Source URL Search String

Academic IEEE Xplore https://ieeexplore.ieee.org (smell OR antipattern OR anti-
pattern OR debt OR anomal OR
refactor OR fault OR challeng OR
vulnerab) AND
(microservice OR micro-service)

ACM Digital Library https://dl.acm.org

Springer https://link.springer.com

ScienceDirect https://www.sciencedirect.com

DBLP https://dblp.org

Scopus https://www.scopus.com/

Grey Google www.google.com

Bing https://www.bing.com

DuckDuckGo https://duckduckgo.com

P
la

n
n

in
g

 Motivation and

Research questions

C
o

n
d

u
ct

in
g  Scheme of search

 Search studies

 Assess quality

 Extract data

 Synthesize data

R
ep

o
rt

in
g

 Results

20 Volume 03, Issue 1, 2025

Table 4: Quality assessment for grey literature

Code Items (Yes = 1 , No = 0)

QA1 Is this a reliable publisher or is the author belonged to a credible organization?

QA2 The author has published in the subject before

QA3 The author is an expert in the field

QA4 The claim of the sources is accurate

QA5 There are no ulterior motives

QA6 The data backs up the conclusions

QA7 The source has a defined goal

QA8 The source addresses a specific problem (s)

QA9 The methodology used by the source is explicitly explained

QA10 The source includes references to support the claims stated in the research

QA11 Limitations are clearly stated

QA12 The date of the source is clearly stated

QA13 The source talks about or links related GL or formal sources

QA14 The source enriches or adds something to the field of microservice antipatterns

QA15 The source supports or contradicts a current assertion

QA16 To support the claims presented in the study, the source includes citations and backlinks

Table 5: Quality assessment for academic literature

Code Items (Yes = 1, Partial = 0.5, No = 0)

General

QA1 Study provides problem definition and motivation

QA2 Research environment is clearly explained

QA3 Research methodology is presented in the study

QA4 Insights and lessons learned are explicitly mentioned

QA5 Contributions along with results are explicitly discussed

Specific

QA6 Research focus is clearly on antipatterns in microservices

QA7 Study gives a clear picture of problems, solutions, and challenges concerning antipatterns in
microservices

QA8 Research clearly states the validation technique applied on its outcome and relevant threats

QA9 Research presents techniques and tools used for the detection or correction of antipatterns in
microservices

QA1
0

Study identifies new directions related to antipatterns in microservices

Table 6: Data Extraction Form: A = Academic Literature, G = Grey Literature

Search Criteria Data Item Description Source

Demographic
info

Study ID Reference Code (AL, GL) sequentially
incremented

A/G

Name Study title A/G

Publication Type J=Journal, C=Conference A

Study Aim Personal notes about each study A/G

Year Publication year A/G

URL URL of publication A/G

Contribution Type Blog post, Industrial whitepaper, Video,
Article, Book

G

RQ1

Causes Causes of antipatterns A/G

Study Design

Experimental, Empirical Study, Solution
proposal, Case Study, Personal experience,
Tool

A/G

RQ2 Impact Impact of antipatterns A/G

RQ3 Detection of antipatterns Techniques, tools applied for detection of
antipatterns in microservices

A/G

RQ4 Refactoring Solutions to resolve antipatterns in
microservices

A/G

21 Volume 03, Issue 1, 2025

Figure 2: Overview of the study

Figure 3: Causes of microservice antipatterns

IV. RESULTS AND DISCUSSION

This section presents and discusses the key findings
derived from evaluating and synthesizing the selected
studies in relation to each research question. Figure 2
summarizes the key findings of our RQs.

A. RQ1: What are the main causes that lead to
antipatterns in microservices?

This study has identified various reasons that introduce
antipatterns in microservices. These reasons are
extracted from the studies based on industrial surveys
and experiences gained from migration of legacy systems
to MSA. We classified them in a list below and also
summarized them in Figure 3. From the list, some of the

causes are found to be overlapping with the causes of
antipatterns in other type of applications as mentioned in
[70]. However, distributed nature and hype-driven
architecture are found applicable only to MSA.

• Unprepared adoption: Before deciding to migrate to
MSA, organizations need to think about the extra
effort required to work on automated deployment,
monitoring, failure, eventual consistency, and other
issues that this architecture style introduces. Many
authors (A1, A5, A7, A21, G3,G13) have mentioned
this cause in their studies.

• Lack of technical skills: Microservices adoption is

22 Volume 03, Issue 1, 2025

difficult since it demands knowledge of new
techniques and technologies, as well as the
requirement to automate software deployment and
monitoring operations (A7, A9, A22). Therefore, the
development team with poor technical skills and their
lack of awareness of the tools involved can easily
cause antipatterns in such types of applications as
highlighted in (A32).

• Team culture: Many authors (A5, A7, A20, G3, G13)
have cited practices and culture that exist in teams or
organizations as a cause of antipatterns in
microservices. For instance, teams must be
organized to handle microservices independently.
Otherwise, this may lead to the development and
deployment-related issues.

• Distributed nature: The current literature
(A3,A18,G4,G15) indicates that MSA implies some
challenging problems of data integrity, management
of microservices, and their consistency due to its
distributed nature. These challenges can lead to
different types of antipatterns in applications.

• Results size: In (A18, A20, G4), the authors
highlighted the need for an efficient and consistent
database management solution, especially in data-
driven microservices applications that process large
amounts of data. According to them, this can
seriously affect the performance of the software.

• Hype-driven architecture: Shifting to MSA because
of its popularity only, believing that all your software-
related problems will be solved may cause
antipatterns and affect the quality of the software
(A22).
The implementation of microservices require that

organizations have empowered small teams handling
them in a way that corresponds to particular business
domains (A5). Product owners, architects, developers,
quality engineers, and operational engineers are just a
few of the roles that these teams must include in order to
provide these services. Complicated code bases are
typically produced by large teams, which hinders and
delays future updates (A21, G3). In addition, teams that
lack authority frequently face delays while they wait for
higher-ups to make decisions. Similarly, a lack of
alignment with business goals results in dependencies
between teams, leading to more delays and drifting away
from MSA. It is crucial for teams to possess essential
skills like API design, development, and understanding of
distributed applications (A7). Without these skills, there
might be increased costs for training or hiring, potentially
diverting the solution from the microservices approach as
teams fall back on their familiar technologies (A9).

The culture within an organization significantly
influences its approach to working on systems, as it
shapes the individual decisions made by its members. In
project-centric cultures, teams are assembled to tackle
specific issues, disbanding once the problem is resolved.
However, this practice often results in a loss of valuable
knowledge about both the problem and its solution.
Additionally, if there is a need to revisit the same problem
or make further modifications to a component,

reconstructing the team or recovering lost knowledge can
pose challenges. In the case of microservices, it becomes
quite difficult for an organization if it decides to operate in
project-centric culture instead of offering team-based
ownership of components (A20, G3). Similarly, whenever
outsourcing is conducted; the outsourced team can
neither adopt the desired organizational culture as it is nor
it can avoid such change. This suggests that culture plays
a crucial role in determining the suitability of companies
or individuals selected to endorse the outsourcing model.

Implementation of MSA brings a lot of challenges and
it doesn’t work for every organization. Some
organizations may find it the only way to keep up with
rapid development and deliver software on time. In
general, organizations that mismatch any of these causes
which are discussed here will pay a toll in the form of
antipatterns when attempting to apply MSA. So, instead
of just following the hype, the decision about such a
transition should be made after evaluating its cost and
gains (A22).
B. RQ2: How do antipatterns affect microservices?
Antipatterns in microservices can harm the resulting
applications if suitable techniques and processes are not
followed. Different authors have mentioned those impacts
which are shown in Figure 4.

Microservices need to be as autonomous and
decoupled as possible to ease the development and
deployment process (G14). This implies that using norms
and standards for the definition of microservices contracts
can make a huge impact on resulting applications (A13,
A19).

Centering microservices around technical concerns
only can easily mutate into something called layering
which was the main disadvantage of service-oriented
architecture. This can eventually incur performance and
reliability issues such as high network latency, failures of
one service affecting others, and slowing down the whole
development process (A1, A3, G6). In (A31), authors
performed an experimental study to validate the existence
of correlation between microservice antipatterns and
microservices performance. Based on their findings,
Cyclic Dependency and Shared Persistence have
significant negative effect on the performance of
microservices. More such studies are needed to find out
impact of different microservice antipatterns on metrics
such as performance, maintenance, cost etc.

Developers frequently construct test cases (e.g., unit,
integration, and system test cases) without having a
complete understanding of the operational environment
or user behavior. Faults are typically identified only during
the process of updating from one service version to
another, or occasionally after the service update has been
completed (A23, A46, G1).

Implementation of MSA requires organizations to
adopt DevOps. Lack of such practice can cause different
forms of antipatterns such as API Versioning, Human
Evolvability, and Lack of evaluation methods. These
antipatterns will eventually hinder the maintainability of
the system (A19, A24, A32, G6). Furthermore, numerous
instances of a service might be active at the same time.
Using virtualization to deploy them isn't cost-effective,

23 Volume 03, Issue 1, 2025

and it also adds a lot of processing overhead (A19).
The microservices approach offers significant

benefits, but can be expensive as it requires different
infrastructure. Also, additional code is often required to
communicate between services in the form of API calls.
Bad antipatterns such as Cyclic Dependency that are
introduced in such calls can make a great impact on the
development and deployment of these services (A13).
Besides, systems such as service directories, messaging,
and queuing services are required to identify appropriate
services and then route calls to them. The presence of
antipatterns in any of these can affect performance and
reliability (A1,A3,A34,A35). Since microservices can be
scripts, containers, or entire virtual machines and require
a structured way to package and deploy them, the
introduction of antipatterns like Red Flag can make a
huge impact on them (A24, G6).

Applications based on MSA also need to implement a
system for monitoring service performance and behavior,
along with specific error handling techniques. If a
microservice is not responding then there is no easy way
for other services to understand the error or determine the
problem. Additional code and monitoring are required to
ensure that problems are treated as errors rather than
simply piling them up (A23). A mechanism to decide when
to include features in services and when to split features
into separate services is also required. Otherwise, these
services will be affected by antipatterns like Wrong Cut
(A46, G1). Moreover, it has been found that the impact of
antipatterns on the cost of developing microservices has
been studied in (A19) only. Further research in this area
especially providing cost comparison of deployment of the
microservices-based application on different cloud
containers will be effective and helpful.

Figure 4: Impact of microservice antipatterns

C. RQ3: What techniques and tools are used for
detecting antipatterns in microservices?

Based on the literature review, we have identified
techniques used for the detection of antipatterns in
microservices. These techniques are further classified
into five broad categories (i.e., manual approaches,
metric-based approaches, probabilistic approaches,
visualization-based approaches, and search-based
approaches) as proposed by Kessentini et al. [71]. The
list of antipatterns detected by respective category along
with the information about tools used for detection is
shown in Table 7.

• D1: Search-based approaches: Source code
and/or bytecode analysis are used to create a realistic
representation of the application. This includes a tree
representation, identification of the system's
endpoints, and the creation of a communication map.
Antipatterns in microservices can be detected with
the help of these representations. With the use of
performance monitoring data, some of the techniques
in this category use various machine learning
algorithms to classify the actions of the target system.
In the first phase, fault injection is used to collect
samples of labeled performance data reflecting
various service behavior, and multiple classification
models are trained using this data. In the second
phase, real-time performance data is transferred to
these models for the accurate detection of anomalies.

• D2: Metric-based approaches: Typically, this type
of approach revolves around building an architectural
model by employing the reverse engineering
approach on source code and communications logs.
This model is then used to evaluate the architecture
design based on identified principles with

corresponding metrics. A dependency graph or other
methods can be used to visualize the results.

• D3: Visualization-based approaches: This type of
approach for detecting antipatterns is about collecting
all service invocation links and constructing a service
dependency graph representing them. A visual
representation of the graph is generated that allows
users to browse all service dependency relationships
and check for anomalies or errors.

• D4: Manual approaches: The information stored in
a microservice catalog helps teams not only resolve
their production incidents quickly but also build
reliable and more operable microservices. It helps to
track all the services and systems running in
production. Without changing the user code, data
regarding resource usage, performance counters,
power consumption, and network performance is
collected. The information is then utilized to evaluate
microservice-based systems in terms of their
interactions with the outside world as well as internal
connections and dependencies.

• D5: Probabilistic approaches: Service workload is
continuously monitored and its response time is
regularly compared with baseline response time.
After applying standard statistical outlier detection
techniques, a higher deviation between these two
means that the service is suspected to have
performance anomalies.

In academic literature, search-based approaches using
static code analysis were found to be effective as
compared to other techniques because these helped
researchers detect a large number of antipatterns in
microservices. Besides, tools used for detection have
also been made available by them. Moreover, metrics-

24 Volume 03, Issue 1, 2025

based and visualization-based approaches have been
experimented on the detection of diverse antipatterns
unlike others (i.e., manual and probabilistic approaches)
which have been applied for the detection of monitoring
type of antipatterns only. In grey literature, microservice
catalog is the only technique from the category of manual
approaches found to be effective for the detection of a
limited number of antipatterns in microservices. Big
companies such as LinkedIn, Spotify, Shopify, Bell, etc.
have relied on in-house built catalogs but have not made
them available online.

D. RQ4: What are the refactoring techniques currently
employed to resolve antipatterns in microservices?

Refactoring is a technique that is applied to reorganize
the structure of the application without altering its original
behavior. It is often performed to remove antipatterns and
improve design quality. Even though refactoring is now a
common practice in the industry, manual refactoring of
antipatterns is still a risky and error-prone task, especially
when it is performed by inexperienced people in a team.

Table 7: Antipatterns detection techniques and tools

T
e

c
h

n
iq

u
e

R
e

fe
re

n
c

e

S
tu

d
y

T
o

o
l

N
a

m
e

R
e

le
a

s
e
 T

y
p

e

L
a

n
g

u
a

g
e

s

A
c

c
u

ra
c

y
 (

%
)

A
n

ti
p

a
tt

e
rn

s

D
e

te
c

te
d

V
a

li
d

a
ti

o
n

 S
e

t

D1 A9 - - - - LEM -

A14 TraceAnomaly Open Source Java P=98, R=97 TA 792 Ms

A16 - - - - TA -

A25 MEPFL Experimental Java Average P=89
Average R=82

TA 49 Ms

A26 ARCAN Prototype Java P=100 CD,SP,HE 40 Ms

A30 MSANose Open Source Java Not measured WC,NG,SG,CD,SL,LTS,
SV,SP, ISI,EU,HE

45 Ms

A33 MARS Open Source Java Average P=82
Average R=89

WC,NG,CD,SL,SV,SP,H
CE

171 Ms

D2 A4 - - - - SG,CD -

A15 - - - - TA -

A27 - - - - LM -

D3 A2 - - - - NST,CD -

A6 - - - - CD,DM,IS -

D4 G1
0

- - - - LTS,LG,HE -

G1
2

- - - - CD,SP -

A34 DEEP-mon Open Source Golang,C++ Not measured LM 36 Ms

D5 A17 - Experimental - Not measured TA -

Abbreviations: SP, Shared Persistence; HE, Hard-coded Endpoints; DM, Distributed Monolith; TA, Trace anomaly; CD, Cyclic
Dependency; LEM, Lack of evaluation methods; WC, Wrong Cuts; NG, No-API Gateway; SG, Microservice Greedy; SL, Shared
Libraries; LTS, Too Many Standards; SV, API Versioning; ISI, Inappropriate Service Intimacy; EU, ESB Usage; LM, Lack of
monitoring; NST, No Service Template; IS, Influential Service; LG, Lack of guidance; HE, Human Evolvability; Ms, Microservices; P,
precision; R, recall.

Moreover, assigning resources to perform refactoring for
microservice antipatterns is not always feasible, due to
constraints in the budget, shorter release cycles, and staff
shortage. Therefore, researchers and practitioners use
different strategies to automate the refactoring process.
After reviewing the primary studies, the authors identified
the following refactoring strategies:

• R1: Split database in different schemas: In (A28, G2,
G5) authors have found this refactoring useful for
resolving antipatterns like Shared Persistence and
Distributed Monolith. This approach can be applied to
different situations especially when services access the
same data store. For instance, in a scenario where a
portion of the data store is accessed by just one service,
one way out is to split it into two different data stores, with
one storing the portion of data accessed by that single
service and the other storing the rest of the data.

• R2: Consumer-driven contract testing: In this
technique, services communicate with one another using
contracts that the consumer creates and then shares with
the provider for verification. In most cases, the contract
defines a series of transactions between the consumer
and the provider. This type of testing technique has
proven to be effective in evaluating service integrations.
Consumer-driven contract testing, unlike end-to-end
testing, can catch all types of errors because it is always
done in isolation from other services (A10, G8, G9, G11).
The occurrence of antipatterns like Oracle Problem and
Test Endpoints can be avoided with the adoption of this
strategy

• R3: Meta-data: Many authors (A1, A12, A23, A29)
have made use of this approach in the form of data
flow diagrams, data structures, tests derived from
service operation data, microservice usage data,

25 Volume 03, Issue 1, 2025

etc. to resolve antipatterns like Wrong Cuts, Test
Endpoints, and Oracle Problem.
• R4: Service Discovery: Antipatterns like Hard-coded
Endpoints can be resolved with the help of this refactoring
which normally occurs in an application when a service A
directly invokes another service B either because the
location of B is hardcoded in the source code of A, or no
message router is used (A28, G7). It may also be possible
to dynamically resolve the endpoint of service by simply
adding a service discovery mechanism.

Table 8 summarizes the list of techniques that have
been applied by researchers and practitioners for
refactoring appropriate antipatterns in microservices.
Only studies that have provided information about tools
either implemented or used are shown in this table.
Despite these efforts, it is found that refactoring
microservice antipatterns is still at an infancy level.
Authors have also witnessed that more interest from the
community is shown toward refactoring test antipatterns.
Newman [3] also highlight the challenges of performing
end-to-end testing on microservices.

In (G11), the author analyzes different types of testing
used for microservices and based on personal experience
suggests contract testing as a suitable choice. Besides,
based on lessons learned from a case study (A10), the
authors suggest that consumer-driven contract testing is
a feasible practice, especially when dealing with
microservices-based applications. Other approaches

proposed in (A23, A29) which make use of run-time data
of microservices may also help refactor test antipatterns.
Refactoring approaches to resolve antipatterns violating
key design principles of microservices such as horizontal
scalability, isolation of failures, and decentralization is
presented in (A28). A prototype is also implemented
based on the methodology proposed with limited
experimentation.
E. Emerging Challenges and Research Opportunities
The study of microservice antipatterns remains an
emerging and rapidly evolving research area. Through
this investigation, we have identified following key
challenges that present opportunities for future research
and practical implementation:

• Many antipatterns still need detection
Our investigation uncovers that microservice antipatterns
manifest not just during development phases, but can
also become institutionalized at the organizational level in
the absence of effective policy frameworks. The current
list of microservice antipatterns detection tools have been
developed with a focus on a limited number of
antipatterns. Exposure to diverse antipatterns for such
tools is needed. Moreover, current and new tools are
required to be evaluated on medium to large scale
industrial-based microservice systems as it is revealed in
this study that the presence of bad antipatterns can
impact on performance, maintainability, and testability of
microservices.

Table 8: Antipatterns refactoring techniques and tools

Reference Refactoring Technique Antipatterns Resolved Tool Name Release Type

R
1

R2 R3 R4 SP HE DM OP TE

A28 ✓ ✓ ✓ ✓ ✓ μFreshener Prototype

G2 ✓ ✓ Gremlin Commercial

G8 ✓ ✓ ✓ Postman Commercial

A11 ✓ ✓ ✓ Pactflow Open Source /Commercial

A23 ✓ ✓ ✓ ExVivoMicroTest Prototype

Abbreviations: SP, Shared Persistence; HE, Hard-coded Endpoints; DM, Distributed Monolith; OP, Oracle Problem; TE, Test
Endpoints.

• Need to apply other techniques for detection of
antipatterns
This study finds that currently available antipatterns
detection tools have mostly made use of search-based
techniques only. Researchers need to explore other
techniques for antipatterns detection and build
corresponding tools. In this regard, metric-based and
visualization-based techniques can be experimented with
in detecting diverse types of antipatterns. This will also
provide an opportunity for finding a more appropriate one,
once the results of applying different techniques become
available.

• More research on identifying impact of bad
antipatterns on microservice quality needed
Initial studies suggest a potential relationship between the
presence of certain microservice antipatterns and the
overall quality of a microservices-based system (A31).
However, to establish a comprehensive understanding,
further research in this direction is needed. Investigating
and quantifying this correlation can provide valuable
insights for researchers and practitioners aiming to

enhance the design and maintainability of microservices-
based systems.

V. CONCLUSION
This study offers a concise yet thorough review of
microservice antipatterns by analyzing academic and
industry literature between 2014 and 2023. Key findings
include:

• Identifying 6 root causes behind antipattern
occurrences.

• Assessing their impacts on microservices.

• Classifying detection methods into 5 groups (manual,
metric-based, probabilistic, visualization-based, and
search-based).

• Highlighting research gaps and opportunities.

• Discovering 4 refactoring approaches for mitigation.
Current research primarily focuses on architecture,
design, and organizational antipatterns, with limited tools
available. Besides most tools detect only specific type of
microservice antipatterns. Additionally, proposed
refactoring methods often lack real-world testing.

26 Volume 03, Issue 1, 2025

A comprehensive, multi-language detection tool remains an unmet need in the field.

Appendix A. Studies selected for this MLR
Table A.1: Selected studies in grey literature

ID Quality Assessment Codes (QA) Quality
score

Reference

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

G1 1 0 0 0 1 0 1 0 1 0 0 1 0 1 1 1 8 [49]

G2 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 9 [50]

G3 1 1 0 0 1 0 1 0 0 1 1 1 1 1 1 1 11 [51]

G4 0 1 0 0 0 0 1 0 1 1 1 1 1 1 1 0 9 [52]

G5 1 0 0 0 1 0 0 1 0 1 1 1 1 1 1 1 10 [53]

G6 0 1 0 1 0 1 1 0 0 1 1 1 0 1 1 1 10 [54]

G7 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 11 [55]

G8 0 1 0 1 1 0 0 1 0 1 0 1 1 1 1 0 9 [56]

G9 1 0 0 1 1 0 1 0 0 1 1 1 1 1 1 1 11 [57]

G10 1 0 0 1 0 1 1 1 0 1 1 1 1 1 1 1 12 [58]

G11 0 1 0 0 1 0 1 0 1 1 0 1 1 1 0 1 9 [59]

G12 1 0 0 1 0 0 1 0 1 1 0 1 1 1 0 0 8 [60]

G13 1 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 11 [63]

G14 1 0 0 1 1 1 1 0 1 0 0 1 1 0 0 1 9 [64]

G15 0 1 1 0 0 1 1 0 1 1 1 0 0 1 0 0 8 [68]

Table A.2: Selected studies in academic literature

ID Title Year Quality score Reference

A1 Challenges of Production Microservices 2018 2.6 [19]

A2 Graph-based and scenario-driven microservice analysis, retrieval,
and testing

2019 2.9 [20]

A3 Microservice Disaster Crash Recovery: A Weak Global
Referential Integrity Management

2020 3.2 [21]

A4 Evaluation of Microservice Architectures: A Metric and Tool-
Based Approach

2018 2.6 [22]

A5 Exploring the Microservice Development Process in Small and
Medium-Sized Organizations

2020 2.9 [23]

A6 Service Dependency Graph Analysis in Microservice Architecture 2020 3.4 [24]

A7 An Experience Report from the Migration of Legacy Software
Systems to Microservice Based Architecture

2019 2.7 [25]

A8 Tool Support for the Migration to Microservice Architecture: An
Industrial Case Study

2019 2.6 [26]

A9 Anomaly Detection and Diagnosis for Container-Based
Microservices with Performance Monitoring

2018 3.5 [27]

A10 Consumer-Driven Contract Tests for Microservices: A Case Study 2019 3.2 [28]

A11 Fine-Grained Access Control for Microservices 2018 3.3 [29]

A12 From Monolith to Microservices: A Dataflow-Driven Approach 2017 3.5 [30]

A13 Functional-First Recommendations for Beneficial Microservices
Migration and Integration Lessons Learned from an Industrial
Experience

2019 3.3 [31]

A14 Unsupervised Detection of Microservice Trace Anomalies through
Service-Level Deep Bayesian Networks

2020 3 [32]

A15 Self-Adaptive Root Cause Diagnosis for Large-Scale Microservice
Architecture

2020 3.5 [33]

A16 An Intelligent Anomaly Detection Scheme for Micro-Services
Architectures With Temporal and Spatial Data Analysis

2020 2.6 [34]

A17 RAD: Detecting Performance Anomalies in Cloud-based Web
Services

2020 3 [35]

A18 Framework for Interaction Between Databases and Microservice
Architecture

2019 2.1 [36]

A19 Microservices Architecture Enables DevOps: Migration to a
Cloud-Native Architecture

2016 3.6 [37]

A20 An Expert Interview Study on Areas of Microservice Design 2018 3.3 [38]

A21 Migrating Towards Microservice Architectures: An Industrial
Survey

2018 2.7 [39]

A22 An Experience Report on the Adoption of Microservices in Three
Brazilian Government Institutions

2018 3 [40]

A23 Automatic Ex-Vivo Regression Testing of Microservices 2020 3.1 [41]

A24 Integrating Continuous Security Assessments in Microservices 2017 2.9 [42]

27 Volume 03, Issue 1, 2025

and Cloud Native Applications

A25 Latent Error Prediction and Fault Localization for Microservice
Applications by Learning from System Trace Logs

2019 2.6 [43]

A26 Towards Microservice Antipatterns Detection 2020 2.5 [44]

A27 Towards a method for monitoring the coupling evolution of
microservice-based architectures

2020 3.3 [45]

A28 Freshening the Air in Microservices: Resolving Architectural
Antipatterns via Refactoring

2020 2.9 [46]

A29 Testing microservice architectures for operational reliability 2020 3.6 [47]

Table A.2 (continued)

ID Title Year Quality score Reference

A30 Automated Code-Smell Detection in Microservices Through Static
Analysis: A Case Study

2020 3.1 [48]

A31 An Empirical Study on Underlying Correlations between Runtime
Performance Deficiencies and “Bad Antipatterns” of Microservice
Systems

2021 2.5 [61]

A32 Impacts, causes, and solutions of architectural antipatterns in
microservices: An industrial investigation

2022 3.7 [62]

A33 On the maintenance support for microservice-based systems
through
the specification and the detection of microservice antipatterns

2023 3.9 [65]

A34 Identifying Anti-Patterns in Distributed Systems With
Heterogeneous Dependencies

2023 2.6 [66]

A35 An Approach for Evaluating the Potential Impact of Anti-Patterns
on Microservices Performance

2023 2.8 [67]

References

[1] Newman, S. (2015). Building Microservices: Designing Fine-
Grained Systems (1st ed.). O’Reilly Media.

[2] Alshuqayran, N., Ali, N., & Evans, R. (2016, November). A
systematic mapping study in microservice

 architecture. In 2016 IEEE 9th International Conference on
Service-Oriented Computing and Applications (SOCA) (pp.
44-51). IEEE.

[3] Jamshidi, P., Pahl, C., Mendonça, N. C., Lewis, J., & Tilkov, S.
(2018). Microservices: The journey so far and challenges
ahead. IEEE Software, 35(3), 24-35.

[4] Lacerda, G., Petrillo, F., Pimenta, M., & Guéhéneuc, Y. G.
(2020). Code antipatterns and refactoring: A tertiary
systematic review of challenges and observations. Journal of
Systems and Software, 167, 110610.

[5] Tahir, A., Dietrich, J., Counsell, S., Licorish, S., & Yamashita, A.
(2020). A large scale study on how developers discuss code
antipatterns and anti-pattern in Stack Exchange sites.
Information and Software Technology, 125, 106333.

[6] Tian, F., Liang, P., & Babar, M. A. (2019). How Developers
Discuss Architecture Antipatterns? An Exploratory Study on
Stack Overflow. 2019 IEEE International Conference on
Software Architecture (ICSA).

[7] Zhou, X., Li, S., Cao, L., Zhang, H., Jia, Z., Zhong, C., ... & Babar,
M. A. (2023). Revisiting the practices and pains of
microservice architecture in reality: An industrial inquiry.
Journal of Systems and Software, 195, 111521.

[8] Aziz, J., & Rasool, G. (2024). A Design-Oriented Classification
of Microservice Smells. UCP Journal of Engineering &
Information Technology (HEC Recognized-Y Category), 2(2),
33-40.

[9] Mumtaz, H., Singh, P., & Blincoe, K. (2020). A systematic
mapping study on architectural antipatterns detection. Journal
of Systems and Software, 110885.

[10] Taibi, D., Lenarduzzi, V., & Pahl, C. (2019). Continuous
Architecting with Microservices and DevOps: A Systematic
Mapping Study. Cloud Computing and Services Science,
126–151.

[11] Ponce, F., Soldani, J., Astudillo, H., & Brogi, A. (2022).
Antipatterns and refactorings for microservices security: A
multivocal literature review. Journal of Systems and Software,
192, 111393. doi:10.1016/j.jss.2022.111393

[12] Parker, G., Kim, S., Al Maruf, A., Cerny, T., Frajtak, K.,
Tisnovsky, P., & Taibi, D. (2023). Visualizing Anti-Patterns in
Microservices at Runtime: A Systematic Mapping Study. IEEE

Access.
[13] Jaeger. (n.d.). Retrieved April 30, 2023, from

https://www.jaegertracing.io/
[14] Zipkin. (n.d.). Retrieved April 30, 2023, from https://zipkin.io/
[15] Garousi, V., Felderer, M., & Mäntylä, M. V. (2019). Guidelines

for including grey literature and conducting multivocal
literature reviews in software engineering. Information and
Software Technology, 106, 101-121.

[16] B. Kitchenham and S. Charters, "Guidelines for Performing
Systematic Literature Reviews in Software engineering," in
"EBSE Technical Report," 2007, vol. EBSE- 2007-01

[17] Ahmad, A., Babar, M.A., 2016. Software architectures for
robotic systems: A systematic mapping study. J. Syst. Softw.
122 (12), 16–39.

[18] Brereton, P., Kitchenham, B., Budgen, D., Turner, M., Khalil,
M., 2007. Lessons from applying the systematic literature
review process within the software engineering Domain. J.
Syst. Softw. 80 (4), 571–583.

[19] Götz, B., Schel, D., Bauer, D., Henkel, C., Einberger, P., &
Bauernhansl, T. (2018). Challenges of production
microservices. Procedia CIRP, 67, 167-172.

[20] Ma, S. P., Fan, C. Y., Chuang, Y., Liu, I. H., & Lan, C. W. (2019).
Graph-based and scenario-driven microservice analysis,
retrieval, and testing. Future Generation Computer
Systems, 100, 724-735.

[21] Manouvrier, M., Pautasso, C., & Rukoz, M. (2020, June).
Microservice Disaster Crash Recovery: A Weak Global
Referential Integrity Management. In International
Conference on Computational Science (pp. 482-495).
Springer, Cham.

[22] Engel, T., Langermeier, M., Bauer, B., & Hofmann, A. (2018,
June). Evaluation of microservice architectures: A metric and
tool-based approach. In International Conference on
Advanced Information Systems Engineering (pp. 74-89).
Springer, Cham.

[23] Sorgalla, J., Sachweh, S., & Zündorf, A. (2020, November).
Exploring the microservice development process in small and
medium-sized organizations. In International Conference on
Product-Focused Software Process Improvement (pp. 453-
460). Springer, Cham.

[24] Gaidels, E., & Kirikova, M. (2020, September). Service
Dependency Graph Analysis in Microservice Architecture.
In International Conference on Business Informatics
Research (pp. 128-139). Springer, Cham.

[25] da Silva, H. H. S., Carneiro, G. D. F., & Monteiro, M. P. (2019).
An experience report from the migration of legacy software

https://zipkin.io/

28 Volume 03, Issue 1, 2025

systems to microservice based architecture. In 16th
International Conference on Information Technology-New
Generations (ITNG 2019) (pp. 183-189). Springer, Cham.

[26] Pigazzini, I., Fontana, F. A., & Maggioni, A. (2019, September).
Tool support for the migration to microservice architecture: An
industrial case study. In European Conference on Software
Architecture (pp. 247-263). Springer, Cham.

[27] Du, Q., Xie, T., & He, Y. (2018). Anomaly Detection and
Diagnosis for Container-Based Microservices with
Performance Monitoring. Algorithms and Architectures for
Parallel Processing, 560–572.

[28] Lehvä, J., Mäkitalo, N., & Mikkonen, T. (2019, November).
Consumer-driven contract tests for microservices: A case
study. In International Conference on Product-Focused
Software Process Improvement (pp. 497-512). Springer,
Cham.

[29] Antonio, N., Vitor, J., Khaled, M., & Ali, A. (2018, October). Fine-
Grained Access Control for Microservices. In The 11th
International Symposium on Foundations & Practice of
Security (Vol. 11358). Springer.

[30] Chen, R., Li, S., & Li, Z. (2017, December). From monolith to
microservices: A dataflow-driven approach. In 2017 24th
Asia-Pacific Software Engineering Conference (APSEC) (pp.
466-475). IEEE.

[31]Gouigoux, J. P., & Tamzalit, D. (2019, March). “Functional-First”
Recommendations for Beneficial Microservices Migration and
Integration Lessons Learned from an Industrial Experience.
In 2019 IEEE International Conference on Software
Architecture Companion (ICSA-C) (pp. 182-186). IEEE.

[32] Liu, P., Xu, H., Ouyang, Q., Jiao, R., Chen, Z., Zhang, S., Yang,
J., Mo, L., Zeng, J., Xue, W., & Pei, D. (2020). Unsupervised
Detection of Microservice Trace Anomalies through Service-
Level Deep Bayesian Networks. 2020 IEEE 31st International
Symposium on Software Reliability Engineering (ISSRE).

[33] Ma, M., Lin, W., Pan, D., & Wang, P. (2020). Self-Adaptive Root
Cause Diagnosis for Large-Scale Microservice
Architecture. IEEE Transactions on Services Computing.

[34] Zuo, Y., Wu, Y., Min, G., Huang, C., & Pei, K. (2020). An
intelligent anomaly detection scheme for micro-services
architectures with temporal and spatial data analysis. IEEE
Transactions on Cognitive Communications and
Networking, 6(2), 548-561.

[35] Mukherjee, J., Baluta, A., Litoiu, M., & Krishnamurthy, D. (2020,
October). RAD: Detecting Performance Anomalies in Cloud-
based Web Services. In 2020 IEEE 13th International
Conference on Cloud Computing (CLOUD) (pp. 493-501).
IEEE.

[36] El Kholy, M., & El Fatatry, A. (2019). Framework for interaction
between databases and microservice architecture. IT
Professional, 21(5), 57-63.

[37] Balalaie, A., Heydarnoori, A., & Jamshidi, P. (2016).
Microservices architecture enables devops: Migration to a
cloud-native architecture. Ieee Software, 33(3), 42-52.

[38] Haselböck, S., Weinreich, R., & Buchgeher, G. (2018,
November). An expert interview study on areas of
microservice design. In 2018 IEEE 11th Conference on
Service-Oriented Computing and Applications (SOCA) (pp.
137-144). IEEE.

[39] Di Francesco, P., Lago, P., & Malavolta, I. (2018, April).
Migrating towards microservice architectures: an industrial
survey. In 2018 IEEE International Conference on Software
Architecture (ICSA) (pp. 29-2909). IEEE.

[40] Luz, W., Agilar, E., de Oliveira, M. C., de Melo, C. E. R., Pinto,
G., & Bonifácio, R. (2018, September). An experience report
on the adoption of microservices in three Brazilian
government institutions. In Proceedings of the XXXII Brazilian
Symposium on Software Engineering (pp. 32-41).

[41] Gazzola, L., Goldstein, M., Mariani, L., Segall, I., & Ussi, L.
(2020, October). Automatic ex-vivo regression testing of
microservices. In Proceedings of the IEEE/ACM 1st
International Conference on Automation of Software Test (pp.
11-20).

[42] Torkura, K. A., Sukmana, M. I., & Meinel, C. (2017, December).
Integrating continuous security assessments in microservices
and cloud native applications. In Proceedings of the10th
International Conference on Utility and Cloud Computing (pp.

171-180).
[43] Zhou, X., Peng, X., Xie, T., Sun, J., Ji, C., Liu, D., ... & He, C.

(2019, August). Latent error prediction and fault localization
for microservice applications by learning from system trace
logs. In Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (pp. 683-694).

[44] Pigazzini, I., Fontana, F. A., Lenarduzzi, V., & Taibi, D. (2020,
June). Towards microservice antipatterns detection.
In Proceedings of the 3rd International Conference on
Technical Debt (pp. 92-97).

[45] de Freitas Apolinário, D. R., & de França, B. B. N. (2020,
October). Towards a method for monitoring the coupling
evolution of microservice-based architectures.
In Proceedings of the 14th Brazilian Symposium on Software
Components, Architectures, and Reuse (pp. 71-80).

[46] Brogi A., Neri D., Soldani J. (2020) Freshening the Air in
Microservices: Resolving Architectural Antipatterns via
Refactoring. In: Yangui S. et al. (eds) Service-Oriented
Computing – ICSOC 2019 Workshops. ICSOC 2019. Lecture
Notes in Computer Science, vol 12019. Springer, Cham.

[47] Pietrantuono, R., Russo, S., & Guerriero, A. (2020). Testing
microservice architectures for operational reliability. Software
Testing, Verification and Reliability, 30(2), e1725.

[48] Walker, A., Das, D., & Cerny, T. (2020). Automated code-smell
detection in microservices through static analysis: A case
study. Applied Sciences, 10(21), 7800.

[49] Mahran, L. (2020). TESTING MICROSERVICES:
PRINCIPLES, CHALLENGES, CASE STUDIES [Blog].
Retrieved 2024, from https://mobidev.biz/blog/testing-
microservices-principles-challenges-case-studies.

[50] Newman, A. (2020). Is your microservice a distributed
monolith? [Blog]. Retrieved 2021, from
https://www.gremlin.com/blog/is-your-microservice-a-
distributed-monolith/.

[51] Grabner, A. (2016). Locating Common Micro Service
Performance Anti-Patterns. InfoQ. Retrieved 2021, from
https://www.infoq.com/articles/Diagnose-Microservice-
Performance-Anti-Patterns/.

[52] Carneiro, C., & Schmelmer, T. (2018). Microservices from day
one.

[53]Aucion, C. (2018). How Anti-Patterns Can Stifle Microservices
Adoption in the Enterprise | Application Performance
Monitoring Blog | AppDynamics. Retrieved 2024, from
https://www.appdynamics.com/blog/engineering/how-to-
avoid-antipatterns-with-microservices/.

[54] Dietrich, E. (2018). Top 4 Ways to Make Your Microservices
Not Actually Microservices | Scalyr. Retrieved 2021, from
https://www.scalyr.com/blog/top-4-ways-to-make-your-
microservices-not-actually-microservices.

[55] Saleh, T. (2016). Microservices Antipatterns. InfoQ. Retrieved
2023, from https://www.infoq.com/presentations/cloud-anti-
patterns/.

[56] Postman. (2017). Automated Testing. Retrieved from
https://www.postman.com/infographics/automated-testing-
whitepaper.pdf

[57] Bulaty, W., & Williams, L. (2019). Testing Microservices: an
Overview of 12 Useful Techniques. InfoQ. Retrieved 2021,
from https://www.infoq.com/articles/twelve-testing-
techniques-microservices-intro/

[58] Laban, J. (2020). Why You Need A Microservice Catalog.
Retrieved 2024, from
https://www.opslevel.com/2020/04/21/why-you-need-a-
microservice-catalog/

[59] Simform, (2019). Microservices Testing Strategies, Types &
Tools: A Complete Guide. (2019). Retrieved 2020, from
https://www.simform.com/microservice-testing-strategies/

[60] Bogard, J. (2017). Avoiding Microservice Megadisasters
[Video]. Retrieved 2020, from
https://www.youtube.com/watch?v=gfh-VCTwMw8

[61] Liu, L., Tu, Z., He, X., Xu, X., & Wang, Z. (2021, September).
An Empirical Study on Underlying Correlations between
Runtime Performance Deficiencies and “Bad Antipatterns” of
Microservice Systems. In 2021 IEEE International
Conference on Web Services (ICWS) (pp. 751-757). IEEE.

[62] Zhong, C., Huang, H., Zhang, H., & Li, S. (2022). Impacts,

https://mobidev.biz/blog/testing-microservices-principles-challenges-case-studies
https://mobidev.biz/blog/testing-microservices-principles-challenges-case-studies
https://www.gremlin.com/blog/is-your-microservice-a-distributed-monolith/
https://www.gremlin.com/blog/is-your-microservice-a-distributed-monolith/
https://www.infoq.com/articles/Diagnose-Microservice-Performance-Anti-Patterns/
https://www.infoq.com/articles/Diagnose-Microservice-Performance-Anti-Patterns/
https://www.scalyr.com/blog/top-4-ways-to-make-your-microservices-not-actually-microservices
https://www.scalyr.com/blog/top-4-ways-to-make-your-microservices-not-actually-microservices
https://www.infoq.com/presentations/cloud-anti-patterns/
https://www.infoq.com/presentations/cloud-anti-patterns/
https://www.infoq.com/articles/twelve-testing-techniques-microservices-intro/
https://www.infoq.com/articles/twelve-testing-techniques-microservices-intro/
https://www.opslevel.com/2020/04/21/why-you-need-a-microservice-catalog/
https://www.opslevel.com/2020/04/21/why-you-need-a-microservice-catalog/
https://www.simform.com/microservice-testing-strategies/
https://www.youtube.com/watch?v=gfh-VCTwMw8

29 Volume 03, Issue 1, 2025

causes, and solutions of architectural antipatterns in
microservices: An industrial investigation. Software: Practice
and Experience, 52(12), 2574-2597.

[63] Abbott, M. (2022, August 17). Why is my development team so
slow? Retrieved May 1, 2024, from
https://akfpartners.com/growth-blog/why-is-my-development-
team-so-slow

[64] Bottleneck #01: Tech debt. (n.d.). Retrieved May 1, 2024, from
https://martinfowler.com/articles/bottlenecks-of-scaleups/01-
tech-debt.html

[65] Tighilt, R., Abdellatif, M., Trabelsi, I., Madern, L., Moha, N., &
Guéhéneuc, Y. G. (2023). On the maintenance support for
microservice-based systems through the specification and the
detection of microservice antipatterns. Journal of Systems
and Software, 111755.

[66] Fang, H., Cai, Y., Kazman, R., & Lefever, J. (2023, March).
Identifying Anti-Patterns in Distributed Systems With
Heterogeneous Dependencies. In 2023 IEEE 20th
International Conference on Software Architecture
Companion (ICSA-C) (pp. 116-120). IEEE.

[67] Matar, R., & Jahić, J. (2023, March). An Approach for
Evaluating the Potential Impact of Anti-Patterns on
Microservices Performance. In 2023 IEEE 20th International
Conference on Software Architecture Companion (ICSA-C)
(pp. 167-170). IEEE.

[68] SAM, P. D. S. (2023). Principles of Software Architecture
Modernization: Delivering Engineering Excellence with the art
of fixing microservices, monoliths, and distributed. BPB
PUBLICATIONS.

[69] Strauss, A., & Corbin, J. (1990). Basics of qualitative research.
Sage publications.

[70] Sharma, T., & Spinellis, D. (2018). A survey on software smells.
Journal of Systems and Software, 138, 158- 173.

[71] Kessentini, W., Kessentini, M., Sahraoui, H., Bechikh, S., &
Ouni, A. (2014). A cooperative parallel search-based software
engineering approach for code-smells detection. IEEE
Transactions on Software Engineering, 40(9), 841-861

https://akfpartners.com/growth-blog/why-is-my-development-team-so-slow
https://akfpartners.com/growth-blog/why-is-my-development-team-so-slow
https://martinfowler.com/articles/bottlenecks-of-scaleups/01-tech-debt.html
https://martinfowler.com/articles/bottlenecks-of-scaleups/01-tech-debt.html

