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ABSTRACT

Electric vehicles have emerged as an alternative way to reduce fossil fuel consumption, which is the
cause of increasing environmental, economical and geopolitical problems. This paper reviews the
strategies for charging electric vehicles smartly from the viewpoint of the grid. These strategies are
classified into three categories. The strategies at the component level discuss the necessary aspects
of batteries, their charging methods, and chargers for smart charging purposes. The strategies on the
system level are discussed under the heads of unidirectional and bidirectional power flow strategies.
Unidirectional power flow strategies manage the power flow from the grid to electric vehicles for their
charging. The bidirectional power flow strategies, apart from charging the electric vehicles, also use
their battery storage for grid support. Also, the strategies that can be deployed at the operational level
are discussed. These strategies, on the one hand, tend to alleviate the stressful impacts of increasing
the load of charging the electric vehicles on the grid, and on the other hand, use the energy storage
capability of the electric vehicles for grid support.

INDEX TERMS Electric Vehicles, Smart Charging, Power Flow Control of Electric Vehicles,

Centralized Control, Decentralized Control

I. INTRODUCTION

Fossil fuels have been the main source of energy
throughout the growth of human civilization. Increasing
industrialization, technological advancements, and
machine dependent lifestyle over the past few decades
have stressed fossil fuels to a dangerous level. This has
resulted in various environmental, economical and
geopolitical problems. The greenhouse gas emissions
have increased to a hazardous level. The prices of
fossil fuels are increasing and becoming more and more
shaky. Above all, the demand for fossil fuels, especially
oil, has resulted in terrible peace-related problems,
leading to the usage of oil as an economic weapon and
the instability of oil-producing countries. So, naturally, the
trend has shifted towards the use of alternative sources
to meet human needs [1], [2]. The usage of Electric
Vehicles (EVs) is one of the attractive options for this
purpose.

The usage of EVs reduces oil consumption, resulting
in less greenhouse gas emissions. Also, the noise
pollution is reduced. It reduces oil imports of a country,
resulting in an improved economy. The cost per
kilometer for an electric drive is less than that of an
internal combustion engine. So, energy is used more
efficiently. The energy stored in the batteries of EVs
can be used to support the grid in terms of voltage and
frequency regulation, peak load shaving, and tracking of
Renewable Energy Sources (RESs). As a result, the
number of EVs is increasing continuously [3]—[5].

From the grid perspective, EVs act as a load while
charging. Studies have shown that the environmental,
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economical and grid-related benefits of EVs can be
achieved if they are charged smartly with respect to the
grid. If not charged smartly, a fleet of EVs may increase
the peak load. This results in increased power demand,
higher transmission losses, heating of transmission
equipment, and ultimately high costs [6], [7]. With
deregulated electricity markets, EVs should be charged
smartly. Otherwise, they are of no economic benefit to
the owner [8]-[10]. An EV powered by a coal-based power
plant produces more pollution than an ordinary fossil fuel-
based vehicle [11]. In short, EVs would do more harm
than good if not charged smartly [12].

This paper reviews smart charging strategies of EVs
from the grid perspective. The aim is to reduce the
burden of adding an extra load of vehicle charging to the
grid, as well as to use the storage capacity of the battery
for grid support. The strategies are described under
three major categories.

In  Section IlI, component-based strategies are
discussed. In Section lll, strategies at the system level
are described. In Section IV, strategies at the
operational level are described. Finally, in Section V, the
conclusions of the whole discussion are drawn, and an
outlook is presented.

II. STRATEGIES AT THE COMPONENT LEVEL

No matter how smart the charging strategies are, nothing
can be gained if the EVs are not able to cope with these
strategies. Therefore, the components of the EVs should
be able to comply with the smart charging strategies. This
section discusses different aspects of the batteries, their
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charging methods, and chargers that are essential for
smart charging.

From the grid perspective, batteries should have high
efficiency, high energy density, high charging and
discharging power, and smooth charging and
discharging characteristics. High efficiency reduces
energy losses. High energy density imparts flexibility of
storage. High charging and discharging power make it
possible to charge the battery rapidly during off-peak
hours and deliver large amounts of power to the grid when
required. Smooth  charging and  discharging
characteristics are desirable for maintaining good power
quality [13].

Initially, lead-acid batteries were used, but these were
dropped due to low energy density and environmental
hazards. Then came the Nickel batteries with higher
energy densities as compared to the lead-acid batteries.
But these batteries have low efficiency, high self-
discharge, and memory effect. Nowadays, lithium-ion
batteries are used. These batteries have relatively high
energy and power density and are capable of fast
charging. Research is going on to improve the batteries
from the grid and customer perspective [14], [15].

There are different ways to charge the battery. The
most common method is constant voltage charging. In
this method, the voltage is kept constant during the
charging. The current is very high at the start and
gradually falls to a very small value. The problem with
this method is that it requires very high power at the
start. The constant current method maintains a constant
current during charging by changing the charging
voltage. This method requires a complex method of
monitoring temperature, voltage, and time to determine
the cut-off. A better choice is the constant current
constant voltage method. In this method, initially the
battery is charged at constant current (battery voltage
rises), and when the voltage reaches a predefined value,
the charging method is shifted to constant voltage (now
the current falls). This method is used for fast charging
[16].

Instead of providing continuous voltage or current,
these may be provided in the form of pulses. The width of
the pulse is adjusted to meet the charging rate. A certain
rest period is provided between the pulses to allow the
chemical reaction to keep pace with the charging, thus
avoiding the gas formation. This effect is strengthened
by providing negative pulses. The selection of an
appropriate charging method depends on local
conditions like battery characteristics, charging circuits,
driving routine, and grid constraints [14].

Charging is done through specialized power electronic
circuits called chargers, which may be built inside the
vehicle (on board) or outside (off board). On-board
chargers are small, of low power rating, and used for
slow charging. Off-board chargers are bigger in size, of
high-power rating, and usually used for fast charging.
These chargers use different control techniques to
implement different charging processes and special
circuits to lessen the grid impact of vehicle
electrification. Typical examples include filters to reduce
harmonics and snubbers to reduce inductive voltage

spikes. The choice of a charger depends on the battery
charging characteristics, driving schedule, and grid
constraints [17].

lll. STRATEGIES AT SYSTEM LEVEL

This section discusses the strategies that can be opted
for on the system level for charging the EVs smartly
from the grid frame of reference. Such strategies can be
categorized into unidirectional and bidirectional power
flow strategies as described below.

A. UNIDIRECTIONAL POWER FLOW STRATEGIES

These strategies treat EVs as loads taking electricity
from the grid and charging the EVs. They are broadly
classified into centralized and decentralized strategies
[11], [18]. Some examples are as follows.

1) Centralized Strategies

A central unit controls the charging of each EV.
Centralized (also known as direct) strategies are simple
to implement but involve high computational effort,
extensive communications, and large delays. Also, there
are issues of data privacy and hacking. So, these
strategies are not appropriate for large systems [11],
[18]. Some of the commonly used strategies are
discussed below.

A Simple Strategy for a Charging Station

In a simple charging strategy, a centralized
communication system inputs some data each time a
new EV arrives, such as the arrival and departure times
of the EV, the state of charge (SoC) of each battery, the
capacity of the battery, and the extent to which the
battery should be charged. This data is used to
formulate an optimization problem to minimize the
power losses under the constraint of charging the
battery to the desired SoC within the given time
schedule without exceeding the maximum power limit of
the charging station. In this way, optimized charging
schedules and charging rates are determined. Such a
non-linear optimization problem can be solved by
sequential quadratic optimization [19], [20].

Fuzzy Logic-Based Strategy

The fuzzy logic technique uses linguistic variables to
define a system, which are the words of a natural
language, e.g., the linguistic variable for an air
conditioning system may be defined as “temperature”.
Each linguistic variable is decomposed into various
terms, e.g., cold, warm, etc.,, to qualify it. These
variables are then quantified using membership functions,
e.g., a numerical value is assigned to “cold"
temperature. This process is called fuzzification. The
interaction of these variables is assessed through
different rules by an inference engine, e.g., if the
temperature is warm, a command for cooling should be
issued. Defuzzification of these assessments
determines the output [21], [22].

Fuzzy logic based charging controller can be used
to ensure a minimum network voltage while charging the
EVs.The required input linguistic variables are the
minimum bus voltage (obtained by power flow solution),
SoC of the batteries (provided by the communication
system between the EV and the battery), and electricity
price (provided by the utility). These inputs are fuzzified
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and assessed through knowledge-based rules by the
inference engine to provide fuzzy charging levels.
Defuzzification of these fuzzy charging levels results in
crisp charging levels of the batteries. If these charging
levels are maintained, the network voltage does not fall
below a minimum value (usually 0.9 p.u.). For example,
charging levels are reduced at peak load when the
system is more vulnerable to voltage drop [23], [24].

As this algorithm is based on linguistic variables and
general rules of system behaviour, it can be easily
extended. As an example, the Vehicle to Grid (V2G)
option may be added by introducing a “discharge”
linguistic variable, which can be used to control the
discharge of batteries for the grid support if surplus
storage is available [24], [25].

Valley Filling Algorithm

The off-peak hours appear as a valley in the load profile
of a network. Stress on the grid caused by the charging of
EVs can be reduced by charging the EVs during the off-
peak hours. Such a strategy is known as the valley-filling
algorithm, which can be carried out in the following steps
[26]-[28].

1) In the first step, the total charging power
required by the EVs at each time step is estimated.
This can be done by developing some stochastic
models based on historically available data. Then
the surplus power at the ki time step (Ps’;r,,) is
calculated as
k _ T k
Ps-m'p - Pgrol::j - Pconv (1)

where (PZ%¥) is the maximum conventional load
and (PX,.) is the conventional load at the kth time

step. After that, the capacity margin index at the kth
time step (CMX) is calculated as

PE
ki'i" (2)

demand

CMF =

Where (PX,. .na) is the charging power demanded
by the EVs at the k" time step and is equal to the
sum of the charging powers of all the EVs
connected at that time step. The time slot with the
highest capacity margin is selected to charge the
EVs. This ensures that the deepest point of the so-
called load valley is filled first.

2) The charging priority index at the ki time step
for the nt" EV (CPX) is calculated as

Ei.‘

CPrF = W.ifﬁ sksI (3)
" 0,else
where EF is the remaining charging energy

required at the ki"time step for the n"EV, Tk is the
remaining number of time intervals at the ki time
step for the n" EV, At is the duration of one time
slot, and P, is the power of the charger of the nt
EV. Moreover, IS andI¢ denote the serial number of
the time step of the connection and disconnection

of the EV, respectively. The EV with a higher
charging priority index means it has a high priority
for charging in a given time slot, and vice versa. It
can be seen that the EVs that are more discharged
and/or have less charging time are given high
priority. If the surplus power is enough to charge all
the EVs in the selected time slot, all the EVs are
connected. Otherwise, EVs are connected
according to their charging priority.

3) The charging energy required and the time left
for each EV are determined. If all the vehicles have
zero charging energy required and/or the end of the
time is reached, the program is terminated.
Otherwise, the next iteration begins with the first
step.
It should be noted that the calculations of (P%,,) use
(Paxy. This ensures that the valleys are filled no higher
than the peak value of the conventional load. The
underlying assumption is that the EVs can be charged
by using the energy available in the gaps between
(Pmaxy and (PX,,) But if some vehicles remain
uncharged at the end of the cycle, a value higher than
(Pex) The value should be used. The lower this value,
the lower the stress on the grid. One way to optimize
this value is the dichotomy method as described in [29].
B. DECENTRALIZED STRATEGIES
In decentralized (also known as indirect, local, or
distributed) strategies, each part of the system,
particularly EVs, takes part in decision-making. So,
computations and communications are reduced as
compared to the centralized strategies. This makes
these strategies attractive for large fleets of EVs [11],
[18]. Some of the strategies are discussed below
Offline Heuristic or Rule-Based Strategy
The algorithm of such a control strategy determines the
hours with the lowest electricity price and the charging
power patterns to charge the battery in that particular
time span without exceeding the load limit of the house.
Specific case studies for price and peak load reduction
by using this algorithm can be found in [20] and [30].
This algorithm is mostly used for simple systems and
does not take into account the charging of all the
vehicles in a particular network [20]. It has a high
computational time, especially for complex systems [24].
It is a decentralized control and does not take into
account the charging of all the vehicles in a particular
network [20], [31].

A typical offline heuristic algorithm takes into account
the daily load profile of a house, total power allowed by
the utility, energy prices, and the arrival and departure
hours of EVs. Analytical relations are used for the
calculations of the battery parameters, e.g., SoC,
voltage, current, etc.

First of all, the time duration for which the EV is
available for charging is determined by the arrival and
departure times. This time duration is sampled into time
slots of equal length. The power available for charging
the EV is calculated considering the power allowed by
the utility and the losses of the charger. Different
charging powers can be set for the EVs. Then the time
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slots are sorted in ascending order of the energy prices.
The time slot with the lowest energy price is selected for
charging the EV. Then the current SoC of the EV is
determined using analytical expressions. If the current
SoC exceeds the desired SoC, the algorithm terminates.
Otherwise, the voltage and the current are determined
from the analytical expressions of the battery. If the
battery current exceeds the nominal current, the battery
is charged at the nominal current. Otherwise, the
battery charges at the calculated current. Afterwards, the
SoC is calculated, and the algorithm starts at the next
time slot with the next lowest price. In this way, the
charging is done at the lowest priced time slots. So, the
charging price is minimized, and the peak load is
avoided to the maximum extent [30].

A Price-Based Routing Mechanism for Charging Stations
Charging patterns of EVs are randomly distributed in
temporal and spatial domains. This puts a non-uniform
stress on charging stations. For example, a charging
station at a particular site may be more loaded at a
particular time than the other one. This leads to
inefficient service of charging stations, high power
losses, and congestion situations from the grid point of
view, as well as inconvenience for the customers [32].

To avoid all these, a routing strategy can be
employed. When the vehicle arrival rate at a particular
charging station exceeds a specified limit, an increased
price is offered by the charging station. This will
encourage the customers to go to a nearby station, thus
increasing the uniformity of load distribution. For each
diverted vehicle, a penalty is imposed on the charging
station as well. This is done to ensure the best efforts of
the charging station to satisfy the customers. With this
vehicle diversion, a communication system is designed
to communicate between the vehicles and charging
stations about the available locations and prices. A
game theoretic model is developed where the operator
of charging stations acts as one player (leader) and EVs
act as another set of players, which respond to the
former player (followers). Each player opts for certain
actions (called “strategies" in game theory) which result
in certain outcomes (called “payoffs" in game theory).
The strategy of the leader, i.e., operator of the charging
stations, is to offer prices to earn maximum profit (leader
payoff) by maximizing the number of customers and
minimizing the diversions, keeping in view the grid
constraints. In response to the leader, the followers, i.e.,
EVs, opt for a strategy of picking those charging
stations where charging is least expensive (follower
payoff) [33], [34].

Multi-Agent System-Based Strategy

A multi-agent system can be used for charging a large
number of EVs (in the range of millions) in a
decentralized manner. This strategy considers the EV
charging system as a set of autonomous agents. An
agent is an entity (physical or virtual) that senses its
environment and reacts in a predefined manner to attain
certain goals. In a multi-agent system, various agents
interact with one another following certain rules to
achieve specialized goals. A properly designed multi-
agent system is robust (i.e., tolerant to faults) and modular

4

(i.e., new agents can be added for enhanced abilities)
[35], [36].

In a typical implementation, the system can be
classified into three agents, namely charging stations,
responsive EVs, and unresponsive EVs. Responsive
EVs are those that can adjust their charging schedules
in accordance with external constraints, e.g., energy
prices, voltage limitations, etc. Unresponsive EVs have
rigid charging schedules. The algorithm is carried out in
the following steps [11].

1) In the 1st step, the arrival of a new EV is
monitored. If there is a new EV, its charging is
planned by referring to the 3 step. If it is the first
time step of the algorithm cycle (usually one day),
the forecasting is done by executing the 2™ step.

2) In the 2" step, the forecasting of renewable
energy generation and the demand of
unresponsive EVs is made. This can be based on
previously available data. The conventional load
(i.e. without EVs) profile comes from the distribution
grid operator. Then the total power demand on
conventional resources at each time step for each
feeder is given by:

Scheduled Responsive EV Load

+ Forecasted Unresponsive EV Load

+ Forecasted Conventional Load

— Forecasted Renewable Energy Generation

and the virtual energy price for each time step for
each feeder is given by:

Power Demand

Power Rating of the Feeder X Profit Factor

Profit factor can be linear, quadratic, or any other
function, depending on revenue targets. It should
be noted that this price is a virtual price and does
not reflect the actual utility price. It can be seen that
the virtual price increases with the demanded
power. Such a pricing strategy encourages the EVs
to charge at low price time steps, which are the time
steps of off-peak loads and/or high renewable
energy generation.
3) The 3 step decides the charging schedule of
each responsive EV on first come first serve basis.
The objective is to minimize the product of the
instantaneous charging power demand of the EV
and virtual cost at that time step over the specified
duration of charging.

The constraint is that the sum of the instantaneous
charging power demand of the EV in the specified
duration should be equal to the desired charging
capacity i.e. the particular EV should be charged to
the desired capacity in the available duration.
Moreover, the instantaneous charging power
demand of the EV should not exceed the nominal
power rating of the charging station.

After the EV is scheduled, the power demand and
energy price for each time step and each feeder
are calculated again, as done in the second step. If
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such an update of energy prices is not done, each
new incoming EV will prefer to get charged at the
lowest energy price points. If this is allowed to go
on, the load at these points will continue to
increase, and hence the stress caused by these
points on the grid will increase as well. In the worst
case, these valley points may become the peak
load points. Moreover, such sequential updates
would incentivize the early-coming responsive
vehicles.
4) After scheduling each responsive EV, the
network is continuously monitored. This can be
done by having measurements in real time or
performing a power flow analysis. If all the
measurements, e.g., voltages, thermal limits, etc.,
are within the specified limits, the monitoring is
continued until the end of the algorithm cycle is
reached, and the algorithm starts again from the
first step.
Meanwhile, if some new EV comes to the grid, its
schedule is determined as stated above. In case
something wrong happens resulting in
unacceptable variations of the voltages or thermal
limits, etc., the previously determined power
demand and charging schedules are nullified. This
may be the result of some unexpected change in
production or demand. The remaining charging
power demands of all the vehicles are determined.
The charging station determines the power required
to be rescheduled to solve the problem. Each
responsive EV is rescheduled again. After
rescheduling a vehicle, network conditions are
monitored. If the problem is solved, no further EV is
rescheduled. Otherwise, rescheduling of the next
EV is done. This continues until the rescheduled
power is zero or there is no EV left. As such, a
condition is not the fault of the customer, no extra
charges are applied for rescheduling. Some
algorithms calculate the schedules at each time
step to avoid such network problems, but this gives
a high computational load to the algorithm.
C. BIDIRECTIONAL POWER FLOW STRATEGIES
Due to the presence of batteries, EVs act as spatially
and temporally distributed energy storage. The idea of
bidirectional power flow strategies is to use this
available storage from the grid perspective, along with
charging the EVs. The power of batteries can be used
for maintaining the frequency and voltage, i.e., regulating
the active and reactive power flow, preventing the line
losses and transformer stress by providing local
generation, providing the spinning reserve, harmonic
filtering, tracking the RESs, and peak load shaving. But
this is done at the cost of complex control techniques,
changes in network operation and structure, high
computational effort, large communication overhead, and
complex fault protection. Moreover, the battery
degradation is enhanced due to the increased number
of charge/discharge cycles. As a result, the economic
analysis of a particular charging strategy is essential.
The bidirectional power flow strategies can be broadly
classified into individual-based strategies and

aggregator-based strategies [37], [38].

1) Individual-Based Strategies

These are very simple strategies that deal with each EV
on an individual basis. When an EV is connected to the
grid, the owner enters the final SoC and departure time.
The load curve of the house and the electricity price
curve are also made available. Such curves are based
on measured or estimated values. The controller
allocates the charging and discharging time slots based
on the fact that the EV should be charged in low price
hours and discharged at high price hours, provided that
the EV is charged to the desired level at the end of the
charging period and the SoC limitations of the battery are
not violated [8], [39].

2) Aggregator-Based Strategies

The storage capacity of a single EV is very small from
the grid's point of view. Using EVs individually for grid
regulation is complex in terms of control, exhaustive in
terms of communication, and less economical in terms
of storage capacity and flexibility. So, many EVs are
grouped and controlled as a whole. This is the essence
of aggregator-based strategies [2], [40]. Some examples
are as follows [40], [41].

Strategies Based on Load Frequency Control Signal

First of all, the current SoC of each EV is measured.
Then the required SoC for the scheduled driving routine
is estimated, keeping in view the charging routine,
battery capacity, and system efficiency provided by the
vehicle owner. If the required SoC is below the current
SoC, it means the vehicle has surplus energy, and it can
participate in V2G operation. Otherwise, the vehicle is to
be charged [42].

In the second step, the participating power of the
aggregator is determined by a multi-objective
optimization problem to maximize the profits earned by
V2G operation and minimize the tracking error of the
load frequency control signal. The constraints are that
the current SoC of each vehicle should not go below the
SoC required for the driving demand during the up
frequency regulation and above the maximum SoC limit
during the down frequency regulation.

In the next step, the aggregator's participating power
is allocated to each EV, which is to be charged or
discharged. The objective is to minimize the change
in the SoC of each EV under the constraints that the
sum of individual vehicle allocated powers is equal to
the participating power of the aggregator without
exceeding the maximum charging/discharging power
rating and without violating the SoC limitations of each
battery [40], [43].

Strategies Based on Integration of Renewable Energy
Sources

Probability density functions of driving and charging
routines are determined based on available statistical
data, and hence, a stochastic model for the power
requirement of EVs is determined. Similarly, the
available data for solar irradiance and wind speed, along
with the respective plant capacities, help to model the
output power of RESs. Network operators provide load
and frequency regulation data on the basis of which
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respective forecasts can be made. Frequency regulation
data is an indication of the grid power requirement as a
positive or negative reserve.

When a new EV arrives, its SoC is measured, and the
owner is prompted to input the charging duration. After
that, the grid power, power from RESs, and frequency
regulation data are estimated. This data is fed to a
controller, which determines the charging priorities. High
priority means high charging power and vice versa. As
different EVs have different arrival times, SoC and
charging durations, different charging/discharging
powers are assigned to these. For example, a vehicle
with low initial SoC and a small charging duration
requires high charging power, and it is unable to
contribute to V2G operation. On the other hand, a
vehicle with a high initial SoC and a long charging
duration requires less charging power and can wait for
off-peak and high renewable energy production times. It
can be discharged during peak load times for grid
contribution. Such  vehicles are incentivized
economically by dynamic pricing [?], [44], [45].
Strategies Based on Peak Load Reduction
Each registered EV owner is identified with a unique
radio frequency identification tag. Whenever an
authorized EV enters a charging station, the owner is
prompted to specify its final SoC and departure time.
The technical details, such as system efficiency, battery
type, etc., can be extracted from the tag.

Based on this information, the charging time of the EV
is estimated. If the charging time exceeds the departure
time, the owner is prompted. The electricity price curve
is fed to the controller, which is regularly updated based
on available electricity market data. The price curve is
guantized into a number of small intervals (usually 15
minutes) during which the price is assumed to be
constant. Based on the charging time and electricity
price, the cheapest time intervals are selected. In this
way, the cheapest possible charging and peak load
reduction are ensured.

If the owner allows for V2G operation, the time
intervals with the highest price are determined for
discharging under the constraint that the EV achieves its
desired SoC at the moment of departure, and SoC
limitatons are not Vviolated. Optimization of
charging/discharging of EVs for the electricity price
implicitly implies the optimization with respect to load
demand [6], [46].

IV. STRATEGIES AT OPERATIONAL LEVEL
The above-mentioned control strategies involve EVs
either at the component level or system level. Strategies
can be developed at the operational level that can
manage the charging of the EVs from a managerial point
of view. A few are discussed below.
1) The discharged battery bank can be swapped
with the charged one. This strategy adds enormous
flexibility to EV scheduling but comes with cost,
infrastructure, and regulation problems [14], [47].
2) The routes of EVs in a particular area are
optimized and allocated efficiently to the available
charging stations. This balances the load on

charging stations and enables predictive modelling of
charging behaviour. However, this approach is
limited to a particular area and requires high
computational effort for route modelling [48], [49].

3) EVs charged by an aggregator can be
scheduled to share the energy stored in the batteries
among themselves. EVs being charged in the homes
can be used to provide electricity for the home
during peak loads or faults, etc. This is called
vehicle-to-home (V2H) operation [50].

4) Apart from the batteries, alternative energy
storage systems, e.g., ultracapacitors and hydrogen-
based energy storage systems, are under
investigation [51], [52].

5) Apart from the physical connection for charging,
electromagnetic phenomena can be used to charge
the EVs in a wireless manner. This strategy has the
advantages of safety and durability, but it has low
efficiency and high power losses [53], [54].

V. CONCLUSIONS

The stress on fossil fuels has continuously increased
over the past few decades, resulting in various
environmental, economical and geopolitical problems.
Electric vehicles can be used to reduce this stress if
charged smartly. If not charged smartly, the vehicle
electrification will be more harmful than beneficial. This
paper discusses the strategies for smart charging of
electric vehicles from the grid perspective. This means
that the discussion on one hand is on the ways to
reduce the burden on the power grid when an additional
load of electric vehicles is added, and on the other
hand, to use the energy storage capabilities of electric
vehicles for grid support. As the first step, the selection
of components for smart charging is discussed.
Batteries, their charging methods, and chargers of
different types are described. Then the strategies on the
system level are discussed, which can be broadly
classified into unidirectional and bidirectional power flow
strategies. Unidirectional power flow strategies charge
the electric vehicles from the grid, whereas the
bidirectional power flow strategies not only charge the
electric vehicles from the grid but also discharge them
to support the grid when needed. Unidirectional power
flow strategies are further classified based on
centralized and decentralized strategies. Centralized
strategies manage the charging of electric vehicles from
a central control unit, whereas in decentralized
strategies, the intelligence is distributed among the
various components of the whole system, particularly
the electric vehicles. The bidirectional power flow
strategies can be split into individual and aggregator-
based strategies. Individual-based strategies consider
each electric vehicle on an individual level, whereas
aggregator-based strategies consider a fleet of electric
vehicles. Since the storage capacity of a single electric
vehicle is small for the grid, the aggregator-based
strategies are practically useful. In the end, some new
ideas like battery swapping, route optimization, battery
energy sharing, vehicle to home concept, usage of
alternative energy storages and inductive charging are
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discussed.

A next step can be to gather the research work done
so far on these new ideas and to discuss their practical
applicability. Various optimization techniques like
genetic algorithm, particle swarm algorithm, interior point
method, and bi-level programming, etc., which are
usually used to implement these charging strategies, can
be studied and compared as an extension of the present
discussion. Moreover, the strategies outlined here can
be used to improve the situation of electric vehicles in
different case studies to bring pleasant effects for the
grid integration of vehicle electrification.
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