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ABSTRACT  
Electric vehicles have emerged as an alternative way to reduce fossil fuel consumption, which is the 
cause of increasing environmental, economical and geopolitical problems. This paper reviews the 
strategies for charging electric vehicles smartly from the viewpoint of the grid. These strategies are 
classified into three categories. The strategies at the component level discuss the necessary aspects 
of batteries, their charging methods, and chargers for smart charging purposes. The strategies on the 
system level are discussed under the heads of unidirectional and bidirectional power flow strategies. 
Unidirectional power flow strategies manage the power flow from the grid to electric vehicles for their 
charging. The bidirectional power flow strategies, apart from charging the electric vehicles, also use 
their battery storage for grid support. Also, the strategies that can be deployed at the operational level 
are discussed. These strategies, on the one hand, tend to alleviate the stressful impacts of increasing 
the load of charging the electric vehicles on the grid, and on the other hand, use the energy storage 
capability of the electric vehicles for grid support. 

 
INDEX TERMS Electric Vehicles, Smart Charging, Power Flow Control of Electric Vehicles, 
Centralized Control, Decentralized Control 

 

I. INTRODUCTION 

Fossil fuels have been the main source of energy 
throughout the growth of human civilization. Increasing 
industrialization, technological advancements, and 
machine dependent lifestyle over the past few decades 
have stressed fossil fuels to a dangerous level. This has 
resulted in various environmental, economical and 
geopolitical problems. The greenhouse gas emissions 
have increased to a hazardous level. The prices of 
fossil fuels are increasing and becoming more and more 
shaky. Above all, the demand for fossil fuels, especially 
oil, has resulted in terrible peace-related problems, 
leading to the usage of oil as an economic weapon and 
the instability of oil-producing countries. So, naturally, the 
trend has shifted towards the use of alternative sources 
to meet human needs [1], [2]. The usage of Electric 
Vehicles (EVs) is one of the attractive options for this 
purpose. 

The usage of EVs reduces oil consumption, resulting 
in less greenhouse gas emissions. Also, the noise 
pollution is reduced. It reduces oil imports of a country, 
resulting in an improved economy. The cost per 
kilometer for an electric drive is less than that of an 
internal combustion engine. So, energy is used more 
efficiently. The energy stored in the batteries of EVs 
can be used to support the grid in terms of voltage and 
frequency regulation, peak load shaving, and tracking of 
Renewable Energy Sources (RESs). As a result, the 
number of EVs is increasing continuously [3]–[5]. 

From the grid perspective, EVs act as a load while 
charging. Studies have shown that the environmental, 

economical and grid-related benefits of EVs can be 
achieved if they are charged smartly with respect to the 
grid. If not charged smartly, a fleet of EVs may increase 
the peak load. This results in increased power demand, 
higher transmission losses, heating of transmission 
equipment, and ultimately high costs [6], [7]. With 
deregulated electricity markets, EVs should be charged 
smartly. Otherwise, they are of no economic benefit to 
the owner [8]–[10]. An EV powered by a coal-based power 
plant produces more pollution than an ordinary fossil fuel-
based vehicle [11]. In short, EVs would do more harm 
than good if not charged smartly [12]. 

This paper reviews smart charging strategies of EVs 
from the grid perspective. The aim is to reduce the 
burden of adding an extra load of vehicle charging to the 
grid, as well as to use the storage capacity of the battery 
for grid support. The strategies are described under 
three major categories. 

In Section II, component-based strategies are 
discussed. In Section III, strategies at the system level 
are described. In Section IV, strategies at the 
operational level are described. Finally, in Section V, the 
conclusions of the whole discussion are drawn, and an 
outlook is presented. 

 
II. STRATEGIES AT THE COMPONENT LEVEL 

No matter how smart the charging strategies are, nothing 
can be gained if the EVs are not able to cope with these 
strategies. Therefore, the components of the EVs should 
be able to comply with the smart charging strategies. This 
section discusses different aspects of the batteries, their 
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charging methods, and chargers that are essential for 
smart charging. 

From the grid perspective, batteries should have high 
efficiency, high energy density, high charging and 
discharging power, and smooth charging and 
discharging characteristics. High efficiency reduces 
energy losses. High energy density imparts flexibility of 
storage. High charging and discharging power make it 
possible to charge the battery rapidly during off-peak 
hours and deliver large amounts of power to the grid when 
required. Smooth charging and discharging 
characteristics are desirable for maintaining good power 
quality [13]. 

Initially, lead-acid batteries were used, but these were 
dropped due to low energy density and environmental 
hazards. Then came the Nickel batteries with higher 
energy densities as compared to the lead-acid batteries. 
But these batteries have low efficiency, high self-
discharge, and memory effect. Nowadays, lithium-ion 
batteries are used. These batteries have relatively high 
energy and power density and are capable of fast 
charging. Research is going on to improve the batteries 
from the grid and customer perspective [14], [15]. 

There are different ways to charge the battery. The 
most common method is constant voltage charging. In 
this method, the voltage is kept constant during the 
charging. The current is very high at the start and 
gradually falls to a very small value. The problem with 
this method is that it requires very high power at the 
start. The constant current method maintains a constant 
current during charging by changing the charging 
voltage. This method requires a complex method of 
monitoring temperature, voltage, and time to determine 
the cut-off. A better choice is the constant current 
constant voltage method. In this method, initially the 
battery is charged at constant current (battery voltage 
rises), and when the voltage reaches a predefined value, 
the charging method is shifted to constant voltage (now 
the current falls). This method is used for fast charging 
[16]. 

Instead of providing continuous voltage or current, 
these may be provided in the form of pulses. The width of 
the pulse is adjusted to meet the charging rate. A certain 
rest period is provided between the pulses to allow the 
chemical reaction to keep pace with the charging, thus 
avoiding the gas formation. This effect is strengthened 
by providing negative pulses. The selection of an 
appropriate charging method depends on local 
conditions like battery characteristics, charging circuits, 
driving routine, and grid constraints [14]. 

Charging is done through specialized power electronic 
circuits called chargers, which may be built inside the 
vehicle (on board) or outside (off board). On-board 
chargers are small, of low power rating, and used for 
slow charging. Off-board chargers are bigger in size, of 
high-power rating, and usually used for fast charging. 
These chargers use different control techniques to 
implement different charging processes and special 
circuits to lessen the grid impact of vehicle 
electrification. Typical examples include filters to reduce 
harmonics and snubbers to reduce inductive voltage 

spikes. The choice of a charger depends on the battery 
charging characteristics, driving schedule, and grid 
constraints [17]. 

 
III. STRATEGIES AT SYSTEM LEVEL 

This section discusses the strategies that can be opted 
for on the system level for charging the EVs smartly 
from the grid frame of reference. Such strategies can be 
categorized into unidirectional and bidirectional power 
flow strategies as described below. 
A. UNIDIRECTIONAL POWER FLOW STRATEGIES 

These strategies treat EVs as loads taking electricity 
from the grid and charging the EVs. They are broadly 
classified into centralized and decentralized strategies 
[11], [18]. Some examples are as follows. 
1) Centralized Strategies 

A central unit controls the charging of each EV. 
Centralized (also known as direct) strategies are simple 
to implement but involve high computational effort, 
extensive communications, and large delays. Also, there 
are issues of data privacy and hacking. So, these 
strategies are not appropriate for large systems [11], 
[18]. Some of the commonly used strategies are 
discussed below. 
A Simple Strategy for a Charging Station 

In a simple charging strategy, a centralized 
communication system inputs some data each time a 
new EV arrives, such as the arrival and departure times 
of the EV, the state of charge (SoC) of each battery, the 
capacity of the battery, and the extent to which the 
battery should be charged. This data is used to 
formulate an optimization problem to minimize the 
power losses under the constraint of charging the 
battery to the desired SoC within the given time 
schedule without exceeding the maximum power limit of 
the charging station. In this way, optimized charging 
schedules and charging rates are determined. Such a 
non-linear optimization problem can be solved by 
sequential quadratic optimization [19], [20]. 
Fuzzy Logic-Based Strategy 

The fuzzy logic technique uses linguistic variables to 
define a system, which are the words of a natural 
language, e.g., the linguistic variable for an air 
conditioning system may be defined as “temperature". 
Each linguistic variable is decomposed into various 
terms, e.g., cold, warm, etc., to qualify it. These 
variables are then quantified using membership functions, 
e.g., a numerical value is assigned to “cold" 
temperature. This process is called fuzzification. The 
interaction of these variables is assessed through 
different rules by an inference engine, e.g., if the 
temperature is warm, a command for cooling should be 
issued. Defuzzification of these assessments 
determines the output [21], [22]. 

Fuzzy logic based charging controller can be used 
to ensure a minimum network voltage while charging the 
EVs.The required input linguistic variables are the 
minimum bus voltage (obtained by power flow solution), 
SoC of the batteries (provided by the communication 
system between the EV and the battery), and electricity 
price (provided by the utility). These inputs are fuzzified 



 

3 Volume 03, Issue 2, 2025 

and assessed through knowledge-based rules by the 
inference engine to provide fuzzy charging levels. 
Defuzzification of these fuzzy charging levels results in 
crisp charging levels of the batteries. If these charging 
levels are maintained, the network voltage does not fall 
below a minimum value (usually 0.9 p.u.). For example, 
charging levels are reduced at peak load when the 
system is more vulnerable to voltage drop [23], [24]. 

As this algorithm is based on linguistic variables and 
general rules of system behaviour, it can be easily 
extended. As an example, the Vehicle to Grid (V2G) 
option may be added by introducing a “discharge" 
linguistic variable, which can be used to control the 
discharge of batteries for the grid support if surplus 
storage is available [24], [25]. 
Valley Filling Algorithm 

The off-peak hours appear as a valley in the load profile 
of a network. Stress on the grid caused by the charging of 
EVs can be reduced by charging the EVs during the off-
peak hours. Such a strategy is known as the valley-filling 
algorithm, which can be carried out in the following steps 
[26]–[28]. 

1) In the first step, the total charging power 
required by the EVs at each time step is estimated. 
This can be done by developing some stochastic 
models based on historically available data. Then 

the surplus power at the kth time step (𝑃𝑠𝑢𝑟𝑝
𝑘 ) is 

calculated as 

 

where (𝑃𝑐𝑜𝑛𝑣
𝑚𝑎𝑥) is the maximum conventional load 

and (𝑃𝑐𝑜𝑛𝑣
𝑘 ) is the conventional load at the kth time 

step. After that, the capacity margin index at the kth 
time step (CMk) is calculated as 

 

Where (𝑃𝑑𝑒𝑚𝑎𝑛𝑑
𝑘 ) is the charging power demanded 

by the EVs at the kth time step and is equal to the 
sum of the charging powers of all the EVs 
connected at that time step. The time slot with the 
highest capacity margin is selected to charge the 
EVs. This ensures that the deepest point of the so-
called load valley is filled first. 

2) The charging priority index at the kth time step 
for the nth EV (CPk) is calculated as 

 
where 𝐸𝑛

𝑘 is the remaining charging energy 
required at the kth time step for the nth EV, Tk is the 
remaining number of time intervals at the kth time 
step for the nth EV, ∆t is the duration of one time 
slot, and Pn is the power of the charger of the nth 
EV. Moreover, 𝐼𝑛

𝑠 and𝐼𝑛
𝑒 denote the serial number of 

the time step of the connection and disconnection 

of the EV, respectively. The EV with a higher 
charging priority index means it has a high priority 
for charging in a given time slot, and vice versa. It 
can be seen that the EVs that are more discharged 
and/or have less charging time are given high 
priority. If the surplus power is enough to charge all 
the EVs in the selected time slot, all the EVs are 
connected. Otherwise, EVs are connected 
according to their charging priority. 

3) The charging energy required and the time left 
for each EV are determined. If all the vehicles have 
zero charging energy required and/or the end of the 
time is reached, the program is terminated. 
Otherwise, the next iteration begins with the first 
step. 

It should be noted that the calculations of (𝑃𝑠𝑢𝑟𝑝
𝑘 ) use 

(𝑃𝑐𝑜𝑛𝑣
𝑚𝑎𝑥). This ensures that the valleys are filled no higher 

than the peak value of the conventional load. The 
underlying assumption is that the EVs can be charged 
by using the energy available in the gaps between 

(𝑃𝑐𝑜𝑛𝑣
𝑚𝑎𝑥) and (𝑃𝑐𝑜𝑛𝑣

𝑘 ) But if some vehicles remain 
uncharged at the end of the cycle, a value higher than 
(𝑃𝑐𝑜𝑛𝑣

𝑚𝑎𝑥) The value should be used. The lower this value, 
the lower the stress on the grid. One way to optimize 
this value is the dichotomy method as described in [29]. 
B. DECENTRALIZED STRATEGIES 

In decentralized (also known as indirect, local, or 
distributed) strategies, each part of the system, 
particularly EVs, takes part in decision-making. So, 
computations and communications are reduced as 
compared to the centralized strategies. This makes 

these strategies attractive for large fleets of EVs [11], 

[18]. Some of the strategies are discussed below 
Offline Heuristic or Rule-Based Strategy 

The algorithm of such a control strategy determines the 
hours with the lowest electricity price and the charging 
power patterns to charge the battery in that particular 
time span without exceeding the load limit of the house. 
Specific case studies for price and peak load reduction 
by using this algorithm can be found in [20] and [30]. 
This algorithm is mostly used for simple systems and 
does not take into account the charging of all the 
vehicles in a particular network [20]. It has a high 
computational time, especially for complex systems [24]. 
It is a decentralized control and does not take into 
account the charging of all the vehicles in a particular 
network [20], [31]. 

A typical offline heuristic algorithm takes into account 
the daily load profile of a house, total power allowed by 
the utility, energy prices, and the arrival and departure 
hours of EVs. Analytical relations are used for the 
calculations of the battery parameters, e.g., SoC, 
voltage, current, etc. 

First of all, the time duration for which the EV is 
available for charging is determined by the arrival and 
departure times. This time duration is sampled into time 
slots of equal length. The power available for charging 
the EV is calculated considering the power allowed by 
the utility and the losses of the charger. Different 
charging powers can be set for the EVs. Then the time 
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slots are sorted in ascending order of the energy prices. 
The time slot with the lowest energy price is selected for 
charging the EV. Then the current SoC of the EV is 
determined using analytical expressions. If the current 
SoC exceeds the desired SoC, the algorithm terminates. 
Otherwise, the voltage and the current are determined 
from the analytical expressions of the battery. If the 
battery current exceeds the nominal current, the battery 
is charged at the nominal current. Otherwise, the 
battery charges at the calculated current. Afterwards, the 
SoC is calculated, and the algorithm starts at the next 
time slot with the next lowest price. In this way, the 
charging is done at the lowest priced time slots. So, the 
charging price is minimized, and the peak load is 
avoided to the maximum extent [30]. 
A Price-Based Routing Mechanism for Charging Stations  

Charging patterns of EVs are randomly distributed in 
temporal and spatial domains. This puts a non-uniform 
stress on charging stations. For example, a charging 
station at a particular site may be more loaded at a 
particular time than the other one. This leads to 
inefficient service of charging stations, high power 
losses, and congestion situations from the grid point of 
view, as well as inconvenience for the customers [32]. 

To avoid all these, a routing strategy can be 
employed. When the vehicle arrival rate at a particular 
charging station exceeds a specified limit, an increased 
price is offered by the charging station. This will 
encourage the customers to go to a nearby station, thus 
increasing the uniformity of load distribution. For each 
diverted vehicle, a penalty is imposed on the charging 
station as well. This is done to ensure the best efforts of 
the charging station to satisfy the customers. With this 
vehicle diversion, a communication system is designed 
to communicate between the vehicles and charging 
stations about the available locations and prices. A 
game theoretic model is developed where the operator 
of charging stations acts as one player (leader) and EVs 
act as another set of players, which respond to the 
former player (followers). Each player opts for certain 
actions (called “‘strategies" in game theory) which result 
in certain outcomes (called “payoffs" in game theory). 
The strategy of the leader, i.e., operator of the charging 
stations, is to offer prices to earn maximum profit (leader 
payoff) by maximizing the number of customers and 
minimizing the diversions, keeping in view the grid 
constraints. In response to the leader, the followers, i.e., 
EVs, opt for a strategy of picking those charging 
stations where charging is least expensive (follower 
payoff) [33], [34]. 
Multi-Agent System-Based Strategy 

A multi-agent system can be used for charging a large 
number of EVs (in the range of millions) in a 
decentralized manner. This strategy considers the EV 
charging system as a set of autonomous agents. An 
agent is an entity (physical or virtual) that senses its 
environment and reacts in a predefined manner to attain 
certain goals. In a multi-agent system, various agents 
interact with one another following certain rules to 
achieve specialized goals. A properly designed multi-
agent system is robust (i.e., tolerant to faults) and modular 

(i.e., new agents can be added for enhanced abilities) 
[35], [36]. 

In a typical implementation, the system can be 
classified into three agents, namely charging stations, 
responsive EVs, and unresponsive EVs. Responsive 
EVs are those that can adjust their charging schedules 
in accordance with external constraints, e.g., energy 
prices, voltage limitations, etc. Unresponsive EVs have 
rigid charging schedules. The algorithm is carried out in 
the following steps [11]. 

1) In the 1st step, the arrival of a new EV is 
monitored. If there is a new EV, its charging is 
planned by referring to the 3rd step. If it is the first 
time step of the algorithm cycle (usually one day), 
the forecasting is done by executing the 2nd step. 
2) In the 2nd step, the forecasting of renewable 
energy generation and the demand of 
unresponsive EVs is made. This can be based on 
previously available data. The conventional load 
(i.e. without EVs) profile comes from the distribution 
grid operator. Then the total power demand on 
conventional resources at each time step for each 
feeder is given by: 

𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑖𝑣𝑒 𝐸𝑉 𝐿𝑜𝑎𝑑
+  𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑 𝑈𝑛𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑖𝑣𝑒 𝐸𝑉 𝐿𝑜𝑎𝑑
+  𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑 𝐶𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑎𝑙 𝐿𝑜𝑎𝑑
− 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑 𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒 𝐸𝑛𝑒𝑟𝑔𝑦 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

and the virtual energy price for each time step for 
each feeder is given by: 

𝑃𝑜𝑤𝑒𝑟 𝐷𝑒𝑚𝑎𝑛𝑑

𝑃𝑜𝑤𝑒𝑟 𝑅𝑎𝑡𝑖𝑛𝑔 𝑜𝑓 𝑡ℎ𝑒 𝐹𝑒𝑒𝑑𝑒𝑟
×  𝑃𝑟𝑜𝑓𝑖𝑡 𝐹𝑎𝑐𝑡𝑜𝑟 

Profit factor can be linear, quadratic, or any other 
function, depending on revenue targets. It should 
be noted that this price is a virtual price and does 
not reflect the actual utility price. It can be seen that 
the virtual price increases with the demanded 
power. Such a pricing strategy encourages the EVs 
to charge at low price time steps, which are the time 
steps of off-peak loads and/or high renewable 
energy generation. 
3) The 3rd step decides the charging schedule of 
each responsive EV on first come first serve basis. 
The objective is to minimize the product of the 
instantaneous charging power demand of the EV 
and virtual cost at that time step over the specified 
duration of charging. 

The constraint is that the sum of the instantaneous 
charging power demand of the EV in the specified 
duration should be equal to the desired charging 
capacity i.e. the particular EV should be charged to 
the desired capacity in the available duration. 
Moreover, the instantaneous charging power 
demand of the EV should not exceed the nominal 
power rating of the charging station. 
After the EV is scheduled, the power demand and 
energy price for each time step and each feeder 
are calculated again, as done in the second step. If 
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such an update of energy prices is not done, each 
new incoming EV will prefer to get charged at the 
lowest energy price points. If this is allowed to go 
on, the load at these points will continue to 
increase, and hence the stress caused by these 
points on the grid will increase as well. In the worst 
case, these valley points may become the peak 
load points. Moreover, such sequential updates 
would incentivize the early-coming responsive 
vehicles. 
4) After scheduling each responsive EV, the 
network is continuously monitored. This can be 
done by having measurements in real time or 
performing a power flow analysis. If all the 
measurements, e.g., voltages, thermal limits, etc., 
are within the specified limits, the monitoring is 
continued until the end of the algorithm cycle is 
reached, and the algorithm starts again from the 
first step. 
Meanwhile, if some new EV comes to the grid, its 
schedule is determined as stated above. In case 
something wrong happens resulting in 
unacceptable variations of the voltages or thermal 
limits, etc., the previously determined power 
demand and charging schedules are nullified. This 
may be the result of some unexpected change in 
production or demand. The remaining charging 
power demands of all the vehicles are determined. 
The charging station determines the power required 
to be rescheduled to solve the problem. Each 
responsive EV is rescheduled again. After 
rescheduling a vehicle, network conditions are 
monitored. If the problem is solved, no further EV is 
rescheduled. Otherwise, rescheduling of the next 
EV is done. This continues until the rescheduled 
power is zero or there is no EV left. As such, a 
condition is not the fault of the customer, no extra 
charges are applied for rescheduling. Some 
algorithms calculate the schedules at each time 
step to avoid such network problems, but this gives 
a high computational load to the algorithm. 

C. BIDIRECTIONAL POWER FLOW STRATEGIES 

Due to the presence of batteries, EVs act as spatially 
and temporally distributed energy storage. The idea of 
bidirectional power flow strategies is to use this 
available storage from the grid perspective, along with 
charging the EVs. The power of batteries can be used 
for maintaining the frequency and voltage, i.e., regulating 
the active and reactive power flow, preventing the line 
losses and transformer stress by providing local 
generation, providing the spinning reserve, harmonic 
filtering, tracking the RESs, and peak load shaving. But 
this is done at the cost of complex control techniques, 
changes in network operation and structure, high 
computational effort, large communication overhead, and 
complex fault protection. Moreover, the battery 
degradation is enhanced due to the increased number 
of charge/discharge cycles. As a result, the economic 
analysis of a particular charging strategy is essential. 
The bidirectional power flow strategies can be broadly 
classified into individual-based strategies and 

aggregator-based strategies [37], [38]. 

 
1) Individual-Based Strategies 

These are very simple strategies that deal with each EV 
on an individual basis. When an EV is connected to the 
grid, the owner enters the final SoC and departure time. 
The load curve of the house and the electricity price 
curve are also made available. Such curves are based 
on measured or estimated values. The controller 
allocates the charging and discharging time slots based 
on the fact that the EV should be charged in low price 
hours and discharged at high price hours, provided that 
the EV is charged to the desired level at the end of the 
charging period and the SoC limitations of the battery are 
not violated [8], [39]. 
2) Aggregator-Based Strategies 

The storage capacity of a single EV is very small from 
the grid's point of view. Using EVs individually for grid 
regulation is complex in terms of control, exhaustive in 
terms of communication, and less economical in terms 
of storage capacity and flexibility. So, many EVs are 
grouped and controlled as a whole. This is the essence 
of aggregator-based strategies [2], [40]. Some examples 
are as follows [40], [41]. 
Strategies Based on Load Frequency Control Signal 

First of all, the current SoC of each EV is measured. 
Then the required SoC for the scheduled driving routine 
is estimated, keeping in view the charging routine, 
battery capacity, and system efficiency provided by the 
vehicle owner. If the required SoC is below the current 
SoC, it means the vehicle has surplus energy, and it can 
participate in V2G operation. Otherwise, the vehicle is to 
be charged [42]. 

In the second step, the participating power of the 
aggregator is determined by a multi-objective 
optimization problem to maximize the profits earned by 
V2G operation and minimize the tracking error of the 
load frequency control signal. The constraints are that 
the current SoC of each vehicle should not go below the 
SoC required for the driving demand during the up 
frequency regulation and above the maximum SoC limit 
during the down frequency regulation. 

In the next step, the aggregator's participating power 
is allocated to each EV, which is to be charged or 
discharged. The objective is to minimize the change 
in the SoC of each EV under the constraints that the 
sum of individual vehicle allocated powers is equal to 
the participating power of the aggregator without 
exceeding the maximum charging/discharging power 
rating and without violating the SoC limitations of each 
battery [40], [43]. 
Strategies Based on Integration of Renewable Energy 
Sources 

Probability density functions of driving and charging 
routines are determined based on available statistical 
data, and hence, a stochastic model for the power 
requirement of EVs is determined. Similarly, the 
available data for solar irradiance and wind speed, along 
with the respective plant capacities, help to model the 
output power of RESs. Network operators provide load 
and frequency regulation data on the basis of which 



 

6 Volume 03, Issue 2, 2025 

respective forecasts can be made. Frequency regulation 
data is an indication of the grid power requirement as a 
positive or negative reserve. 

When a new EV arrives, its SoC is measured, and the 
owner is prompted to input the charging duration. After 
that, the grid power, power from RESs, and frequency 
regulation data are estimated. This data is fed to a 
controller, which determines the charging priorities. High 
priority means high charging power and vice versa. As 
different EVs have different arrival times, SoC and 
charging durations, different charging/discharging 
powers are assigned to these. For example, a vehicle 
with low initial SoC and a small charging duration 
requires high charging power, and it is unable to 
contribute to V2G operation. On the other hand, a 
vehicle with a high initial SoC and a long charging 
duration requires less charging power and can wait for 
off-peak and high renewable energy production times. It 
can be discharged during peak load times for grid 
contribution. Such vehicles are incentivized 
economically by dynamic pricing [?], [44], [45]. 
Strategies Based on Peak Load Reduction 

Each registered EV owner is identified with a unique 
radio frequency identification tag. Whenever an 
authorized EV enters a charging station, the owner is 
prompted to specify its final SoC and departure time. 
The technical details, such as system efficiency, battery 
type, etc., can be extracted from the tag. 

Based on this information, the charging time of the EV 
is estimated. If the charging time exceeds the departure 
time, the owner is prompted. The electricity price curve 
is fed to the controller, which is regularly updated based 
on available electricity market data. The price curve is 
quantized into a number of small intervals (usually 15 
minutes) during which the price is assumed to be 
constant. Based on the charging time and electricity 
price, the cheapest time intervals are selected. In this 
way, the cheapest possible charging and peak load 
reduction are ensured. 

If the owner allows for V2G operation, the time 
intervals with the highest price are determined for 
discharging under the constraint that the EV achieves its 
desired SoC at the moment of departure, and SoC 
limitations are not violated. Optimization of 
charging/discharging of EVs for the electricity price 
implicitly implies the optimization with respect to load 
demand [6], [46]. 

 
IV. STRATEGIES AT OPERATIONAL LEVEL 

The above-mentioned control strategies involve EVs 
either at the component level or system level. Strategies 
can be developed at the operational level that can 
manage the charging of the EVs from a managerial point 
of view. A few are discussed below. 

1) The discharged battery bank can be swapped 
with the charged one. This strategy adds enormous 
flexibility to EV scheduling but comes with cost, 
infrastructure, and regulation problems [14], [47]. 
2) The routes of EVs in a particular area are 
optimized and allocated efficiently to the available 
charging stations. This balances the load on 

charging stations and enables predictive modelling of 
charging behaviour. However, this approach is 
limited to a particular area and requires high 
computational effort for route modelling [48], [49]. 
3) EVs charged by an aggregator can be 
scheduled to share the energy stored in the batteries 
among themselves. EVs being charged in the homes 
can be used to provide electricity for the home 
during peak loads or faults, etc. This is called 
vehicle-to-home (V2H) operation [50]. 
4) Apart from the batteries, alternative energy 
storage systems, e.g., ultracapacitors and hydrogen-
based energy storage systems, are under 
investigation [51], [52]. 
5) Apart from the physical connection for charging, 
electromagnetic phenomena can be used to charge 
the EVs in a wireless manner. This strategy has the 
advantages of safety and durability, but it has low 
efficiency and high power losses [53], [54]. 

 
V. CONCLUSIONS 

The stress on fossil fuels has continuously increased 
over the past few decades, resulting in various 
environmental, economical and geopolitical problems. 
Electric vehicles can be used to reduce this stress if 
charged smartly. If not charged smartly, the vehicle 
electrification will be more harmful than beneficial. This 
paper discusses the strategies for smart charging of 
electric vehicles from the grid perspective. This means 
that the discussion on one hand is on the ways to 
reduce the burden on the power grid when an additional 
load of electric vehicles is added, and on the other 
hand, to use the energy storage capabilities of electric 
vehicles for grid support. As the first step, the selection 
of components for smart charging is discussed. 
Batteries, their charging methods, and chargers of 
different types are described. Then the strategies on the 
system level are discussed, which can be broadly 
classified into unidirectional and bidirectional power flow 
strategies. Unidirectional power flow strategies charge 
the electric vehicles from the grid, whereas the 
bidirectional power flow strategies not only charge the 
electric vehicles from the grid but also discharge them 
to support the grid when needed. Unidirectional power 
flow strategies are further classified based on 
centralized and decentralized strategies. Centralized 
strategies manage the charging of electric vehicles from 
a central control unit, whereas in decentralized 
strategies, the intelligence is distributed among the 
various components of the whole system, particularly 
the electric vehicles. The bidirectional power flow 
strategies can be split into individual and aggregator-
based strategies. Individual-based strategies consider 
each electric vehicle on an individual level, whereas 
aggregator-based strategies consider a fleet of electric 
vehicles. Since the storage capacity of a single electric 
vehicle is small for the grid, the aggregator-based 
strategies are practically useful. In the end, some new 
ideas like battery swapping, route optimization, battery 
energy sharing, vehicle to home concept, usage of 
alternative energy storages and inductive charging are 
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discussed. 

A next step can be to gather the research work done 
so far on these new ideas and to discuss their practical 
applicability. Various optimization techniques like 
genetic algorithm, particle swarm algorithm, interior point 
method, and bi-level programming, etc., which are 
usually used to implement these charging strategies, can 
be studied and compared as an extension of the present 
discussion. Moreover, the strategies outlined here can 
be used to improve the situation of electric vehicles in 
different case studies to bring pleasant effects for the 
grid integration of vehicle electrification. 
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