
Date available online: 13-02-2025
Vol. 2, Issue 2 (June - December 2024)
This is an open-access article.

33 VOLUME 02, Issue 2, 2024

A Design-Oriented Classification of
Microservice Smells

Junaid Aziz1, and Ghulam Rasool1

1Department of Computer Science, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan

Corresponding author: Junaid Aziz (e-mail: mjunaidaziz@gmail.com).

Abstract— Context: Introduction of bad smells can generate negative consequences on the quality of

microservices. It is essential to gather state-of-the-art knowledge on these smells and understand the challenges

they present. This will benefit researchers and practitioners in mitigating the consequences of smells in

microservice-based systems. Objective: The main goal of this study is to present a comprehensive catalogue of

microservice smells. Method: To document the advancements and best practices in the field of microservice

smells., we performed a multivocal literature review study incorporating both academic and grey literature

sources. We systematically analyzed 34 studies published from the beginning of 2014 until the end of 2023 by

following standard guidelines. Results: 38 bad smells in microservices are identified and cataloged in 10 different

types. Conclusion: Research gaps and open challenges are highlighted in this study. This will give directions to

other researchers and practitioners towards addressing challenges posed by smells in microservices.

Index Terms—Microservice architecture; Bad smells; Anti-patterns;

I. INTRODUCTION

Microservice architecture (MSA) is powerful and popular

architecture style for polyglot applications built with the

composition of small services, called “microservices”. In this

architecture, the core concept of high cohesion and loose

coupling is applied by making these services completely

independent in development and deployment. Besides, every

service is required to run its processes on its own and

communicate with other services via lightweight

mechanisms. Service splitting, testing, integration of services,

logging, and monitoring are some of the technical challenges

that need to be addressed with the help of design patterns

while adopting MSA [1].

Antipatterns or bad smells are symptoms that may indicate

a deeper quality problem in the system design or code [2].

These smells can be found at various levels of abstraction,

such as architecture, design, and code [3]. Code smells are

flaws in the design of software that makes it difficult to

comprehend and maintain compatibility, resulting in less

resilient and compromised system development [4]. Design

smells can influence a set of classes in a design framework

and highlight violations of design principles such as the

principle of circular dependencies [5]. The architecture smell

is a higher-level system design issue. This is a sort of

technical debt that can have a negative impact on the overall

maintainability of a software system. Compared to refactoring

code and design smells, refactoring architecture smells takes

more time and effort [6].

To counter smells in applications, the software engineering

community has explored various ways including proposing

catalogs of smells for MSA. However, the scattered

information about such resources poses a challenge to both

researchers and practitioners while developing appropriate

methods, techniques, and tools concerning microservice

smells or antipatterns. Hence, analyzing and synthesizing

information from academic and grey literature might help the

software development community in comprehending the

current state of knowledge on microservice smells. Recently,

a tertiary study [48] is performed to consolidate a catalog of

microservice smells extracted only from academic literature.

Microservice smells reported in grey literature are missing in

their study. This multivocal literature review (MLR) fill this

gap by extending their work. The objective of this MLR is to

consolidate both academic and industrial knowledge in order

to capture the state of art and practice on microservice smells

by including only those microservice smells which have been

frequently discussed among researchers and practitioners.

The following are the major novel contributions of this study:

• Highlight most frequently studied microservice smells in

the literature

• Present a catalog of microservice smells based on their

types

The remainder of this paper is arranged as follows. In

related work we discuss the existing studies performed on

microservice smells and highlight their shortcomings.

Research methodology followed in the study is described in

survey methodology section. Results of the study along with

discussion are presented in results and discussion section.

Conclusions section outline the outcome of this study and

potential future directions.

II. RELATED WORK

There have been few attempts aiming at reviewing the state-

of-the-art and current practices on microservice smells. An

overview of these studies is illustrated here.

Neri et al. [7]conducted a systematic review of academic and

grey literature to identify the most well-known architectural

smells in microservices. They also proposed a taxonomy of these

smells by organizing them based on four design principles such

as independent deployability, horizontal scalability, isolation of

mailto:mjunaidaziz@gmail.com

34 VOLUME 02, Issue 2, 2024

failure, and decentralization. Taxonomy proposed in their study

is missing a lot of microservice smells that have discovered

recently such as no service template, local logging, influential

service, etc.

Soldani et al. [8]discovered through a grey literature review

that microservices-based applications have to face design,

development, and operational challenges. They discovered that

in such applications, business logic is heavily dispersed among a

large number of microservices that are all evolving

independently. They also found that there is a lack of

methodology to quantify and minimize bad design decisions in

such types of applications. Their study was performed with a

focus on just technical challenges faced by microservices.

Bogner et al. [3] conducted a literature review of

microservices bad smells and antipatterns. Their survey was not

only conducted on a limited number of digital libraries but also

included antipatterns and bad smells highlighted by researchers

only. Studies from grey literature were not included in their

search process. Moreover, they did not report or classify the

harmfulness of antipatterns.

Tighilt et al. [9]conducted a literature review of published

articles and analyzed different open-sourced projects. They

presented a catalog of microservice antipatterns (or smells) along

with their implementation and refactoring solutions to remove

them. However, the viability of refactoring solutions proposed in

their study was not empirically validated. Besides, they did not

mention smells related to testing and organization.

Carrasco et al. [21] found 9 bad smells related to MSA and its

migration by digesting different sources from the academia and

grey literature. Their study revealed some common best practices

as potential solutions for the architecture and migration bad

smells but ignoring security and monitoring smells.

Additionally, their search for academic and grey literature

sources was performed using search engines only. This gives rise

to doubts about the credibility and completeness of results.

The authors conducted a tertiary study aiming not only to

compile a comprehensive catalog of overlapping microservice

smells but also to categorize them [48]. Their catalog is based on

material drawn from academic literature, overlooking the smells

reported in grey literature. This restriction may impact the

comprehensiveness of the catalog, as grey literature often

encompasses valuable insights and practical experiences that

contribute to an in depth understanding of microservice smells.

Our work is different from these studies as we are aiming here

to build a unified catalog of all microservice smells reported in

academic and grey literature both. This study presents these

smells in a classified form that has been generated based on the

nature of each smell. This will help in achieving standardization

vis-à-vis microservices as suggested in [45].

III. RESEARCH METHODOLOGY

Multivocal literature review (MLR) is a type of literature

review that incorporates both academic and grey literature

sources. Academic literature includes material that is peer-

reviewed such as papers published in journals and conferences.

Grey literature consists of material that is publicly available in

different forms such as blogs, videos, white papers, books, etc.

Unlike academic literature, grey literature usually does not

undergo a rigorous peer-review process. MLRs are useful for

both researchers and practitioners because they summarize the

current state of the art from academic and grey literature on a

specific topic.

We have followed the guidelines proposed by Garousi et al.

[10] to perform this MLR, which are based on systematic

literature review (SLR) guidelines suggested by Kitchenham et

al. [11]. As per the guidelines, the MLR review process involves

three major stages: planning the review, conducting the review,

and reporting the review.

A. PLANNING THE MLR

The objective of this study is to capture the state of the art

and practices in cataloguing microservice smells. During initial

observation it is found that due to their strong interest on

microservices both researchers and practitioners have

contributed a lot through academic and grey literatures. Hence,

instead of conducting either systematic literature review or

mapping study, a comprehensive MLR is conducted to capture

the state of the art and practices in line with the objectives of

this study. To achieve this, we classify peer-reviewed papers

(i.e., journal and conference articles) as academic literature and

other studies (i.e., blog posts, industrial whitepapers, articles,

videos, and books) as grey literature. Moreover, we have

formulated the following research questions for this study: -

RQ: How much attention different types of microservice

smells have received from academia and industry?

Rationale – By consolidating the list of reported smells from

both academic research and industry sources, our goal is to

categorize the smells found in microservices-based

applications. This approach will facilitate the creation of a

unified catalog of these smells which is currently lacking.

B. CONDUCTING THE MLR

We employed IEEE Xplore, ACM, Springer, ScienceDirect,

DBLP and Scopus to search papers in the academic literature

which are widely used databases and digital libraries to extract

computer science and software engineering publications [25].

To look for grey literature (e.g., books, blog posts, videos,

whitepapers), we used Google, Bing and DuckDuckGo search

engines. The reason for using these search engines is that they

remain consistent over a period of time and a considerable

difference in the results produced by them is witnessed with

Google standing apart [107]. We looked for published studies

between the beginning of 2014 (when Lewis et al. [1]

introduced microservices) and the end of 2023. The search

string “smell OR antipattern OR anti-pattern OR debt OR

anomal) AND (microservice OR micro-service” was structured

according to the criteria suggested by Petersen et al. [13]. The

search string includes keywords from each aspect of our study

problem. We ran the search string on academic and grey

literatures independently. Final selection of studies from both

academic and grey literatures were merged later. The stages of

our search and selection process for academic literature and

grey literatures can be seen in Figure 1. Authors performed

35 VOLUME 02, Issue 2, 2024

these steps iteratively and the final selection of studies was

made with consensus whereas conflicts were resolved through

the mediation of another researcher.

Step1 — String execution: The search string was applied to the

title, abstract, and keywords of studies in all electronic databases

(see Table 3).

Step2 — Study extraction: We marked the study as "relevant" in

our datasheet if its title or keywords were matching the search

terms of this study to keep it for future reading. Otherwise, it was

ruled out. Duplicates were also removed from the selected

studies.

Step3 — Study screening: Each study was thoroughly examined

for additional processing by reading the abstracts and

conclusions.

Step4 — Study selection: We included a study for this MLR if it

met all of the inclusion criteria and none of the exclusion criteria

after reviewing the complete text of the study (see Table 1). This

yielded us 17 studies from academic literature and 13 studies

from the grey literature.

Step5 — Snowballing: For further identification of relevant

studies, we examined the references of selected studies using

Wohlin [27] forward and backward snowballing techniques.

This helped us to identify 4 additional primary studies from

academic literature which were not found in the initial search.

The final set of articles contains 21 academic studies (see Table

A.2 in Appendix A), and 13 studies from the grey literature (see

Table A.1 in Appendix A).

TABLE 1

PRIMARY STUDIES SELECTION CRITERIA

Inclusion Exclusion

- Journal/Conference Articles,

blog posts, whitepapers,

industry articles, videos, and
books written in English

- A study that is found unsuitable by

assessing either the title or abstract or

summary

- A study that has no full text available

- The search terms or synonyms
are present in title, keywords or

comments

- Sufficient focus on smells (or related
terms like technical debt) and its

detection technique is not provided

- In abstract or summary authors
are specifically addressing

microservices Smells or related
terms

- Studies covering topics such as
benefits of Microservice

Architecture, Comparing SOA with
Microservices, etc.

- The contribution of the

academic/grey literature studies
need to be clearly described in

terms of techniques applied,

model evaluation with least 1
case study, issues faced

concerning smells, lessons

learned, and limitations

- Studies that are written by

practitioners having no known
experience in microservices

- Studies based on assumptions or

simulation

FIGURE.1. MLR search process (AL=academic literature, GL=grey literature)

36 VOLUME 02, Issue 2, 2024

FIGURE 2. Academic literature publication types

FIGURE 3. Grey literature publication types

IV. RESULTS AND DISCUSSION

This section highlights and discusses the findings obtained after

evaluating and synthesizing data from the selected studies that

relate to each of the research questions addressed in this study.

A. RQ: How much attention different types of
microservice smells have received from academic and
industry? RQ: How much attention different types of
microservice smells have received from academic and
industry?

In the studied time interval, it has been observed that

microservice smells started attracting the attention of both

communities in 2016 with grey literature studies taking the lead

over academic studies. In academic literature from 2017

onwards, conference publications have mostly prevailed over

journal articles (see Figure2). Besides, the number of

publications in conferences has grown faster as compared to

journals which have grown steadily. Sources in grey literature

have varied over time (see Figure3). However, most of the

contributions on the topic came from professional community

blogs.

The following design types were used to classify the selected

studies from academic and grey literature: -

• Case study: An industrial problem is chosen for evaluation

• Empirical study: Results are made either by conducting

interviews or evaluating more than one real-time application

• Experimental: Evaluation is done through a prototype on

small scale problems

• Personal experience: Experience is gained by following the

complete lifecycle of an industrial problem

• Solution proposal: Solution is proposed without verifying or

evaluation

• Tool: A tool is developed and released for further evaluations
The distribution of studies by design types listed above

throughout the studied period in academic and grey literature is

shown in Figure 4. It is witnessed that experience gained

through solving industrial problems was shared by both

communities on yearly basis. Moreover, in academic literature,

16 primary studies were found to have conducted empirical

studies. The majority of the information about microservice

smells extracted by interviewing microservice developers and

practitioners on different forums. As a result of this, few smell

detection tools were introduced but detecting a limited number

of microservice smells only. Additionally, we did not find any

experimental study in grey literature whereas, in academic

literature, 13 studies werefound to have performed

experimental evaluations through small-scale prototypes. One

possible outcome of this trend suggests that academia needs

access to more industrial-based microservice systems to

improve their proposed techniques and tools for the detection

of smells.

We have explored microservice smells with a focus on different

areas. These explorations have resulted in various types of

smells which have been classified in this study based on the

nature of each smell. It is also pertinent to distinguish between

severe and non-severe smells. Few studies have attempted to

identify smells having negative impact on microservices

empirically. In (A15), authors analyzed the documentation of a

real life microservice-based project and conducted interviews.

Based on the results, they list down smells that are found to

have negatively impacted the system without ranking them. In

(A6), after conducting survey of experience microservice

developers, authors assigned harmfulness score to each

microservice smell on a 10-point Likert scale where 0 being not

harmful and 10 being extremely harmful. We have used this

information and provided severity level of microservice smells

in terms of Low (≥0), Medium (≥4) and High (≥6) here in

this study. Table 2 presents a catalog of all types of

microservice smells identified by this study with corresponding

references and their severity levels. By doing so, we intend to

remove the ambiguity of similar smells that have been reported

under different names causing confusion among researchers

and practitioners. Severity column of smells having no such

information found by this study is left blank in Table 2. This

gives a potential direction to other researchers to empirically

evaluate their level of impacts on microservices. This study

also found that smells in microservice-based applications may

occur not only in various stages of software development but

also at the organization level if proper policies are not adopted.

This will also lead to an unfruitful migration, especially from

monolith to microservices. Therefore, suitable practices and

techniques should be adopted to avoid smells at all stages of

37 VOLUME 02, Issue 2, 2024

application development. Moreover, some disparity about the

importance of these types of smells is found in academic and

grey literature. For instance, test, data, migration, cloud,

monitoring, and security type of smells were discussed more in

academic literature whereas the contribution of grey literature

was found to be mostly in architecture, design, and

organization types of smells. This trend suggests that

practitioners might have not witnessed those smells being

discussed widely in academic literature or current microservice

smell detection tools are not up to the mark. In the future, this

information gap may narrow down once appropriate

microservice smells detection tools become available and fully

operational.

TABLE 2MICROSERVICE SMELLS

Type Smell Description Study ID Severity

A
rc

h
it

ec
tu

re

Shared

Persistence also
known as. Data

Ownership

Different

microservices access
the same relational

database.

A5,A17,

A6,
A18,G2,

G3,G4,G

9,G10,G7
,,G10

High

API Versioning

also known as.
Static Contract

APIs are not

semantically
versioned.

A6,A5,A

6,A12,A1
7,

A19,A20,

G2,G9,G
13,G7,G9

High

Wrong Cuts

also known as.

Developer

Without a
Cause

Occurs when

microservices are not

split by features

A15,A16,

A5,A8,A

2,A6, G2,

G12, G7

High

NO-API

Gateway also

known

as.Service Fan
Out

Microservices

communicate directly

with each other.

A1,A6,A

15,A45,

G4,G10,

G12, G7,
G9

Mediu

m

Cyclic

Dependency

A cyclic chain of calls

between microservices
exists

A3,A5,A

7,A9,A6,
A14, G7,

G11

High

Inappropriate

Service

Intimacy

The microservice

keeps on connecting to

private data from other
services

A5,A6,

G12, G7

Mediu

m

Unstable

Dependency

A subsystem that

depends on other less
stable subsystems

A9,

G12,G13

-

ESB Usage The microservices

communicate via an

enterprise service bus

A6, G7 High

Timeout also

known as..Are

We There Yet

The service consumer

is unable to connect to

the microservice.

G2,G13 -

Give It a Rest Thinking of REST as

the only

communication
platform and ignoring

the power of

messaging

G2,G3 -

Queue

Explosion

Microservices interact

with multiple message
queues to get

asynchronous

guaranteed processing

G8 -

Hub-Like

Dependency

Arises when an

abstraction has
dependencies with a

large number of other

abstractions

A9 -

D
es

ig
n

Microservice

Greedy also

known as.

More The

Merrier

Teams tend to create

new microservices for

each feature, even
when they are not

needed

A1,A5,A

6,A7,A8,

A2,A6,A
13,

A18,G1,

G2,
G3,G7,G

10

Low

Distributed

Monolith also

known as Sloth

A Service becomes a

standalone monolith

itself

A7,G5,G

5,G10,

G6,G13

-

Anemic Model Domain objects

contain little or no
business logic

A8,G6 -

Feature

Concentration

Occurs when an

architectural entity
implements different

functionalities in a

single design
construct.

A9 -

C
o
d

e
Shared Libraries

also known as. I

Was Taught to

Share

Shared libraries

between different

microservices are used

A3,A6,

A18,A19,

G2, G7

Mediu

m

Hard-Coded

Endpoints also

known as
Hardcoded IPs

and Ports

Hardcoded IP

addresses and ports of

the services between
connected

microservices exist

A6,

G13,G7
High

No Service

Template
A template that can be

used by developers for

developing new
service

A1,A3,A

5,G7
-

Local Logging Logs are stored locally
in each microservice,

instead of using a

distributed logging
system

G7 -

T
es

t

Oracle problem

also known as.
Pride

Output of test results

are difficult to verify
given an input to the

system

A4, G5 -

Test Endpoints Team implements

additional service

endpoints for testing
purpose

A8,G10 -

D
at

a

System

Referential
Integrity

Recovery of the system

referential integrity in
case of a disaster crash

A4 -

M
ig

ra
ti

o
n

Complex

Legacy
Team finds legacy

code buggy or complex

so build a new one

A6,A14,

A21
-

Data-driven

Migration
It occurs when you

migrate both the

service functionality

and the

corresponding data

together when creating
microservices

G2 -

O
rg

an
iz

at
i

o
n

Too Many

Standards also
known as

Lust/Gluttony

Different development

languages, protocols,
frameworks are used.

A5,A6,A

5,A6,A12
,

A18,A21,
G1,G3,G

Mediu

m

38 VOLUME 02, Issue 2, 2024

4,G5,G6,
G7

Lack of

guidance also

known as

Magic Pixie

Dust

No guided material on

how to migrate

monolithic to
microservice

A6,A13,

G1,G2,G

9

-

Small Team

Size also known

as. Greed

Team of developers

may be assigned to

work on more than one
microservice due to a

shortage of skilled

people

A6,A15,

G5,G7,G

12

-

Red Flag also

known as.
Wrath

The company still

work without changing
their processes and

policies. No CI/CD

tools are introduced to
developers

G1,G5,G

7,G9
-

Human

Evolvability

also known as

Scattershot

Teams are often out of

sync with respect to the

complete picture of a

system

A8,A19,

G1,G7,

G12

-

C
lo

u
d

Cold-start A newly created

container incurs a start-

up latency due to
runtime initialization

A16 -

Critical

Component
A service violates

service level objectives

(SLO) of the

associated request
under power capping

A3 -

M
o
n
it

o
ri

n
g

Trace anomaly Anomaly propagation

from massive

monitoring metrics,

and to pinpoint the root
cause of the failure.

A17,A4,

A15,A16
-

Lack of

monitoring
No mechanism to

monitor the status of

microservices

A6, G7 -

Influential

service also

known as

Mega-Service

A service becomes

critical and may

become the cause of
system failure/affect

cloud power

management

A7,G6,G

7
-

Lack of

evaluation
methods

Lack of metrics and

evaluation methods to
check the performance

A7 -

S
ec

u
ri

ty

Confused

deputy attacks

Trust between

microservices is

compromised

A2 -

Powerful tokens One security token is

generated for all the

services

A2 -

FIGURE 4. Study designs of academic (AL) and grey (GL) literature

B. Open challenges and future research directions

Research in the field of microservice smells is still young and

evolving. This study has identified the following open

challenges for researchers and practitioners:

1) Need polyglot tools for smells detection and refactoring.

The majority of microservice smells detection tools only work

with java-based applications. Similarly, in the case of

refactoring, there is no difference. This requires attention as

MSA provides the flexibility of building applications using

multiple programming languages. Researchers and

practitioners need to look for avenues where tools can be built

for detecting and refactoring diverse types of microservice

smells covering different programming languages.

2) Lack of standard benchmark systems for smells

detection tools. Only a handful of tools are available to detect

a limited number of smells. Moreover, these tools have been

validated on different and small toy problems except MSANose

[A47] and MARS [A54] which have been tested on two mid-

sized benchmark systems. It is also challenging to detect the

disparity in the results of these tools due to the availability of a

limited number of benchmark systems. Hence, it becomes quite

difficult for developers to choose the right tool. There is also a

need to devise an evaluation matrix of current and future smells

detection tools to help developers in making the correct choice.

3) Need of industrial case studies for finding severe

microservice smells. A little disparity about the importance of

microservice smells found in academic and grey literature

suggests the need for access to more industrial-based

microservice systems. This may help researchers in addressing

only those smells which are found vulnerable by practitioners.

Lotz et al. [98] have performed such an experiment through a

case study based on an embedded system and checked the

applicability of microservice smells reported in the literature.

More similar case studies, covering different domains are

needed to scrutinize the currently reported list of microservice

smells.

39 VOLUME 02, Issue 2, 2024

V. CONCLUSION

This study provides a brief and comprehensive overview of up-

to-date information about microservice smells. We searched

extensively in the academic and grey literature for relevant

studies published between 2014 and 2023. This helped us

identifying a wide range of smells (38 at the time of writing)

and cataloging them into 10 different types as per the nature of

each smell. We also found that the community has so far

discussed architecture, design and organization smells mostly;

with little focus on other types of smells. Also, currently

available tools can only detect certain types of smells. This

implicates that a complete tool capable of detecting diverse

smells in microservices covering multiple programming

languages is still lacking.

CONTRIBUTION OF AUTHORS

Junaid Aziz: Conception, Methodology, Investigation and analysis, Writing

original draft & editing, Visualization. Ghulam Rasool: Conception,

Supervision.

REFERENCES

[1] Microservice API Patterns. Retrieved Mar 1, 2024, from
https://microservice-api-patterns.org/

[2] Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D., & Gamma,

E. (1999). Refactoring: Improving the Design of Existing Code
(1st ed.). Addison-Wesley Professional.

[3] Bogner, J., Boceck, T., Popp, M., Tschechlov, D., Wagner, S., &

Zimmermann, A. (2019). Towards a Collaborative Repository for
the Documentation of Service-Based Antipatterns and Bad Smells.

2019 IEEE International Conference on Software Architecture

Companion (ICSA-C).
[4] Yamashita, A., & Moonen, L. (2013). Do developers care about code

smells? An exploratory survey. 2013 20th Working Conference

on Reverse Engineering (WCRE).
[5] Suryanarayana, G., Samarthyam, G., & Sharma, T. (2014). Refactoring

for Software Design Smells: Managing Technical Debt (1st ed.).

Morgan Kaufmann.
[6] Fontana, F. A., Pigazzini, I., Roveda, R., & Zanoni, M. (2016).

Automatic Detection of Instability Architectural Smells. 2016 IEEE

International Conference on Software Maintenance and Evolution
(ICSME).

[7] Neri, D., Soldani, J., Zimmermann, O., & Brogi, A. (2019). Design

principles, architectural smells and refactorings for microservices:
a multivocal review. SICS Software-Intensive Cyber-Physical

Systems, 1-13.
[8] Soldani, J., Tamburri, D. A., & Van Den Heuvel, W. J. (2018). The

pains and gains of microservices: A Systematic grey literature

review. Journal of Systems and Software, 146, 215-232.

[9] Tighilt, R., Abdellatif, M., Moha, N., Mili, H., Boussaidi, G. E., Privat,

J., & Guéhéneuc, Y. G. (2020, July). On the Study of Microservices
Antipatterns: a Catalog Proposal. In Proceedings of the European

Conference on Pattern Languages of Programs 2020 (pp. 1-13).

[10] Garousi, V., Felderer, M., & Mäntylä, M. V. (2019). Guidelines for
including grey literature and conducting multivocal literature

reviews in software engineering. Information and Software

Technology, 106, 101-121.

[11] B. Kitchenham and S. Charters, "Guidelines for Performing

Systematic Literature Reviews in Software engineering," in "EBSE

Technical Report," 2007, vol. EBSE- 2007-01
[12] Cavacini, A., 2015. What is the best database for computer science

journal articles?.Scientometrics 102 (3), 2059–2071

[13] Petersen K, Feldt R, Mujtaba S, Mattsson M (2008) Systematic

mapping studies in software engineering. In: Proceedings of the

12th international conference on evaluation and assessment in
software engineering (EASE’08). BCS Learning & Development

Ltd, pp 68–77

[14] Lenarduzzi, V., Lomio, F., Saarimäki, N., & Taibi, D. (2020). Does

migrating a monolithic system to microservices decrease the

technical debt? Journal of Systems and Software, 169, 110710.
[15] Antonio, N., Vitor, J., Khaled, M., & Ali, A. (2018, October). Fine-

Grained Access Control for Microservices. In The 11th

International Symposium on Foundations & Practice of Security
(Vol. 11358). Springer.

[16] de Toledo, S. S., Martini, A., & Sjøberg, D. I. K. (2020). Improving

Agility by Managing Shared Libraries in Microservices. Agile
Processes in Software Engineering and Extreme Programming –

Workshops, 195–202.

[17] Luo, G., Zheng, X., Liu, H., Xu, R., Nagumothu, D., Janapareddi, R.,
... & Liu, X. (2019, December). Verification of microservices using

metamorphic testing. In International Conference on Algorithms

and Architectures for Parallel Processing (pp. 138-152). Springer,
Cham.

[18] Fritzsch, J., Bogner, J., Wagner, S., & Zimmermann, A. (2019,

September). Microservices migration in industry: intentions,
strategies, and challenges. In 2019 IEEE International Conference

on Software Maintenance and Evolution (ICSME) (pp. 481-490).

IEEE.
[19] Zhang, H., Li, S., Jia, Z., Zhong, C., & Zhang, C. (2019, March).

Microservice architecture in reality: An industrial inquiry. In 2019

IEEE international conference on software architecture (ICSA) (pp.
51-60). IEEE.

[20] Bogner, J., Fritzsch, J., Wagner, S., & Zimmermann, A. (2019,

March). Microservices in industry: insights into technologies,
characteristics, and software quality. In 2019 IEEE international

conference on software architecture companion (ICSA-C) (pp. 187-

195). IEEE.
[21] Bogner, J., Fritzsch, J., Wagner, S., & Zimmermann, A. (2019,

September). Assuring the evolvability of microservices: insights

into industry practices and challenges. In 2019 IEEE International

Conference on Software Maintenance and Evolution (ICSME) (pp.

546-556). IEEE.

[22] Gouigoux, J. P., & Tamzalit, D. (2017, April). From monolith to
microservices: Lessons learned on an industrial migration to a web

oriented architecture. In 2017 IEEE International Conference on
Software Architecture Workshops (ICSAW) (pp. 62-65). IEEE.

[23] Hou, X., Li, C., Liu, J., Zhang, L., Hu, Y., & Guo, M. (2020,

November). ANT-man: towards agile power management in the
microservice era. In SC20: International Conference for High

Performance Computing, Networking, Storage and Analysis (pp. 1-

14). IEEE.
[24] Taibi, D., & Lenarduzzi, V. (2018). On the definition of microservice

bad smells. IEEE software, 35(3), 56-62.

[25] Chen, L. (2018, April). Microservices: architecting for continuous
delivery and DevOps. In 2018 IEEE International conference on

software architecture (ICSA) (pp. 39-397). IEEE.

[26] Mazzara, M., Dragoni, N., Bucchiarone, A., Giaretta, A., Larsen, S.
T., & Dustdar, S. (2018). Microservices: Migration of a mission

critical system. IEEE Transactions on Services Computing.

[27] Abidi, M., Khomh, F., & Guéhéneuc, Y. G. (2019, July). Anti-patterns
for multi-language systems. In Proceedings of the 24th European

Conference on Pattern Languages of Programs (pp. 1-14).

[28] de Toledo, S. S., Martini, A., Przybyszewska, A., & Sjøberg, D. I.
(2019, May). Architectural technical debt in microservices: a case

study in a large company. In 2019 IEEE/ACM International

Conference on Technical Debt (TechDebt) (pp. 78-87). IEEE.
[29] Gunasekaran, J. R., Thinakaran, P., Nachiappan, N. C., Kandemir, M.

T., & Das, C. R. (2020, December). Fifer: Tackling resource

underutilization in the serverless era. In Proceedings of the 21st
International Middleware Conference (pp. 280-295).

[30] Sundelin, A., Gonzalez-Huerta, J., & Wnuk, K. (2020, June). The

hidden cost of backward compatibility: when deprecation turns into
technical debt-an experience report. In Proceedings of the 3rd

International Conference on Technical Debt (pp. 67-76).

[31] Richardson, C. (2019). Microservices adoption antipatterns [Blog].
Retrieved 2020, from

https://microservices.io/microservices/antipatterns/-

/the/series/2019/06/18/microservices-adoption-antipatterns.html.
[32] Richards, M. (2016). Microservices AntiPatterns and Pitfalls. o'reilly.

[33] Gupta, D., & Palvankar, M. (2020). Pitfalls & Challenges Faced

During a Microservices Architecture Implementation. Retrieved
from https://www.cognizant.com/whitepapers/pitfalls-and-

40 VOLUME 02, Issue 2, 2024

challenges-faced-during-a-microservices-architecture-

implementation-codex5066.pdf

[34] Abbott, M. (2019). MICROSERVICE ANTI-PATTERN: THE
SERVICE MESH [Blog]. Retrieved 2020, from

https://akfpartners.com/growth-blog/microservice-anti-pattern-

service-mesh.
[35] Bryant, D. (2016). The Seven Deadly Sins of Microservices (Redux).

OpenCredo. Retrieved 2020, from https://opencredo.com/blogs/the-

seven-deadly-sins-of-microservices-redux/
[36] Tilkov, S. (2018). Microservice Patterns & Antipatterns [Video].

Retrieved 2020, from

https://www.youtube.com/watch?v=RsyOkifmamI.
[37] Pitman, C. (2018). Microservice Antipatterns: The Queue Explosion.

Retrieved 2021, from

http://cpitman.github.io/microservices/2018/03/25/microservice-
antipattern-queue-explosion.html#.YIfX9R3ivIU

[38] Alagarasan, V. (2016). Microservices Antipatterns [Video]. Retrieved

2020, from https://www.youtube.com/watch?v=uTGIrzzmcv8
[39] de Toledo, S. S., Martini, A., & Sjøberg, D. I. (2021). Identifying

architectural technical debt, principal, and interest in microservices:

A multiple-case study. Journal of Systems and Software, 177,
110968.

[40] Wang, Y., Kadiyala, H., & Rubin, J. (2021). Promises and challenges

of microservices: an exploratory study. Empirical Software
Engineering, 26(4), 1-44.

[41] Ramírez, F., Mera-Gómez, C., Bahsoon, R., & Zhang, Y. (2021,

June). An Empirical Study on Microservice Software Development.
In 2021 IEEE/ACM Joint 9th International Workshop on Software

Engineering for Systems-of-Systems and 15th Workshop on

Distributed Software Development, Software Ecosystems and
Systems-of-Systems (SESoS/WDES) (pp. 16-23). IEEE.

[42] Alves, J. (2021), Disasters I've seen in a microservices world,

Retrieved 2021, from https://world.hey.com/joaoqalves/disasters-i-

ve-seen-in-a-microservices-world-a9137a51,

[43] Kanjilal, J. (2021), Managing Application Dependencies in

Distributed Architectures, Retrieved 2021, from
https://www.developer.com/design/managing-application-

dependencies/
[44] Deeeet (2021), How We Reorganize Microservices Platform Team,

Retrieved 2021, from

https://engineering.mercari.com/en/blog/entry/20210908-2020-07-
16-083548/

[45] Abdelfattah, A. S., & Cerny, T. (2023). Roadmap to Reasoning in

Microservice Systems: A Rapid Review. Applied Sciences, 13(3),
1838.

[46] D. Taibi, B. Kehoe and D. Poccia, "Serverless: From Bad Practices to

Good Solutions," 2022 IEEE International Conference on Service-
Oriented System Engineering (SOSE), Newark, CA, USA, 2022,

pp. 85-92.

[47] Cummins, H. (2022, March 17). Seven ways to fail at microservices.
Retrieved May 1, 2023, from

https://www.infoq.com/presentations/7-microservices-anti-

patterns/
[48] Cerny, T., Abdelfattah, A. S., Al Maruf, A., Janes, A., & Taibi, D.

(2023). Catalog and detection techniques of microservice anti-

patterns and bad smells: A tertiary study. Journal of Systems and
Software, 206, 111829.

[49] Taibi, D., Lenarduzzi, V., & Pahl, C. (2020). Microservices anti-

patterns: A taxonomy. In Microservices (pp. 111-128). Springer,
Cham..

APPENDIX A
STUDIES SELECTED FOR THIS MLR

TABLE A.1

SELECTED STUDIES IN GREY LITERATURE

ID Title Reference

G1 Microservices adoption antipatterns [31]

G2 Microservices antipatterns and pitfalls [32]

G3 Pitfalls & Challenges Faced During a Microservices

Architecture Implementation

[33]

G4 MICROSERVICE ANTI-PATTERN: THE

SERVICE MESH

[34]

G5 The Seven Deadly Sins of Microservices (Redux) [35]

G6 Microservice Patterns & Antipatterns [36]

G7 Microservices Anti-patterns: A Taxonomy [49]

G8 Microservice Antipatterns: The Queue Explosion [37]

G9 Microservices Anti patterns [38]

G10 Disasters I've seen in a microservices world [42]

G11 Managing Application Dependencies in Distributed

Architectures

[43]

G12 How We Reorganize Microservices Platform Team [44]

G13 Seven Ways to Fail at Microservices [47]

TABLE A.2

SELECTED STUDIES IN ACADEMIC LITERATURE

ID Title Year Reference

A1 Does migrating a monolithic system to

microservices decrease the technical debt?

2020 [14]

A2 Fine-Grained Access Control for

Microservices

2018 [15]

A3 Improving Agility by Managing Shared

Libraries in Microservices

2020 [16]

A4 Verification of Microservices Using

Metamorphic Testing

2019 [17]

A5 Microservices Migration in Industry:

Intentions, Strategies, and Challenges

2019 [18]

A6 Microservice Architecture in Reality: An

Industrial Inquiry

2019 [19]

A7 Microservices in Industry: Insights into

Technologies, Characteristics, and

Software Quality

2019 [20]

A8 Assuring the Evolvability of

Microservices: Insights into Industry

Practices and Challenges

2019 [21]

A9 From Monolith to Microservices: Lessons

Learned on an Industrial Migration to a

Web Oriented Architecture

2017 [22]

A10 ANT-Man: Towards Agile Power

Management in the Microservice Era

2020 [23]

A11 On the definition of microservice bad

smells

2018 [24]

A12 Microservices: Architecting for

Continuous Delivery and DevOps

2018 [25]

A13 Microservices: Migration of a Mission

Critical System

2018 [26]

A14 Anti-Patterns for Multi-Language

Systems

2019 [27]

A15 Architectural Technical Debt in

Microservices: A Case Study in a Large

Company

2019 [28]

A16 Fifer: Tackling Resource Underutilization

in the Serverless Era

2020 [29]

A17 The Hidden Cost of Backward

Compatibility: When Deprecation Turns

into Technical Debt - an Experience

Report

2020 [30]

A18 Identifying architectural technical debt,

principal, and interest in microservices: A

multiple-case study

2021 [39]

A19 Promises and challenges of microservices:

an exploratory study

2021 [40]

A20 An Empirical Study on Microservice

Software Development

2021 [41]

A21 Serverless: From Bad Practices to Good

Solutions

2022 [46]

