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ABSTRACT Analysis of light curves emanating from various celestial bodies is of paramount importance in order 

to enable ourselves with the ability to quantify the variability in sky and discover time-varying ob jects. Large 

Synoptic Survey Telescope (LSST) [1] gather voluminous time-series data, however, classifying these events from 

large-scale surveys is a challenging task that requires efficient and robust machine learning methods. In this paper, we 

present a novel approach for astronomical time series classification using gradient boost, a powerful ensemble 

technique that combines weak learners into a strong classifier. We apply our method to two datasets from the 

Catalina [2] and Zwicky Transient [3] Facility surveys, which contain light curves of various types of transients and 

variables. We compare our results with state-of-the-art methods that use different features and models. We show 

that our method achieves superior performance in terms of accuracy with comparable computational complexity. 

We also discuss the advantages and limitations of our method and suggest possible directions for future work. 
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I. INTRODUCTION 

The exploration of our cosmic surroundings has 
transitioned into a revolutionary phase with the 
implementation of advanced astronomical surveys, 
prominently featuring the Large Synoptic Survey 
Telescope (LSST) [1]. These surveys meticulously 
curate large amounts of time-series data [4], capturing 
the ever-evolving dynamism of celestial entities. In 
order to reveal the concealed intricacies within this data 
mandates an adept classification methodology; ne- 
cessitating application of sophisticated machine 
learning [5] methodologies. 

The Large Synoptic Survey Telescope (LSST), being 
positioned at the Cerro Pachón mountain in Chile, is 
designed to execute and collect time-series data of the 
night sky. It has the ability to capture the wide-field 
images covering the entire Southern hemisphere. 
Equipped with a 3.2-gigapixel camera, LSST promises 
to capture dynamic cosmic events, contributing 
immensely to our understanding of the universe’s 
evolution and structure. 

Unarguably, the utilization of machine learning 
algorithms[5] to classify time-series data from the Large 
Synoptic Survey Telescope (LSST) marks a significant 
leap forward in the field of observational astronomy. 
Although, originally based on the Photometric LSST 
Astronomical Time-Series Classification Challenge 
(PLAsTiCC), Kaggle Challenge [6] (2018), researchers 
have contributed ably to unveil the hidden aspects of night 
sky by proposing novel methodologies. A possibility still 
exists in order to substantiate the usefulness and 
relevance of modern machine learning sophisticated 
algorithms to solve a complex problem without having 
the expert-domain knowledge. 

In this paper, we present a Gradient Boost [7] based 
classifier to classify the objects observed by LSST, 
advocating the ease and accuracy to implement a 
complex problem without being hindered by absence of 
expert-domain knowledge. The data used for training 
our model is acquired from Kaggle Dataset [6]. The 
trained model is able to classify with promising accuracy 
and reasonable computational complexity. 

The paper is organized as follows: Section II covers 
the literature review, Section III highlights the aspects 
related to dataset, Section IV showcases the proposed 
methodology. Results are presented in Section V and 
finally conclusion with future direction for related work 
is mentioned. 

 
II. LITERATURE REVIEW 

Keeping the scope of this work restricted to 
application of Machine Learning models to classify the 
light curves, the related material was evaluated. The 
Kaggle Challenge (PLAsTiCC) [8] attracted entries from 
over 1,000 teams, showcasing diverse approaches to 
tackle the classification problem. The challenge 
enables bench-marking of various proposed solutions 
in the form of algorithms. 

The winner of Competition Kyle Boone [9], utilized 
boosted Decision Trees (BDTs) with Light GBM 
achieving exceptional performance in Supernova and 
Kilonova classification. It was revealed that BDTs offered 
higher interpretability and robustness to overfitting. 
Various other participants [10], [11] in their post-challenge 
analysis, mentioned exploring KNN and K-means 
clustering but ultimately found them less effective than 
their final approach. 

Many teams [10] combined individual weak 
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learners, leveraging their strengths and have 
established that stacking and blending yielded 
significant performance. It was also revealed that 
ensembles often provided better generalization and 
robustness than single models. In another work, Khan 
et al. [12] used Random Forests [13] and achieved a 
reasonable accuracy. As per the researchers they have 
achieved a score of 63% on the same dataset. It is 
revealed that traditional machine learning models 
struggle with high-volume datasets and have shown to 
exhibit poor generalization. 

Based on the reviewed literature, ensemble 
methods have the potential to produce promising 
results for addressing the classification problems, 
without having the constraint of limited expert-domain 
knowledge. The research void is further elaborated in 
the sections where we best present the gradient boost 
method to produce the best results. 

 
III. DATASET 

A. ORIGINAL DATASET WITH LIGHT-CURVES DATA 

The PLAsTiCC dataset consists of training and test 
sets provided in multiple CSV files. There are two types 
of files: header files containing summary information 
about astronomical objects and light-curve data 
containing time series of fluxes in six filters, including 
flux uncertainties. 

1) Header File Information 

• Object ID: A unique identifier, typically an integer 
(int32), assigned to each astronomical object for 
identification and tracking purposes. 

• ra: Right Ascension, a sky coordinate 
representing the east-west position of an object on the 
celestial sphere (float32). 

• decl: Declination, a sky coordinate 

representing the north-south position of an object 
on the celestial sphere (float32). 
gal l: Galactic longitude, a coordinate in the galactic 
coordinate system indicating the angular distance of 
an object from the Galactic Center (float32). 

• gal b: Galactic latitude, a coordinate in the 

galactic coordinate system indicating the angular 
distance of an object from the Galactic plane 
(float32). 
• ddf: A Boolean flag indicating whether the 

object is within the Deep Drilling Field (DDF) survey 
area (1 for DDF). 
• hostgal specz: The spectroscopic redshift of the 
source, providing a precise measure of the source’s 
distance by examining its spectral lines (float32). 

• hostgal photoz: The photometric redshift of the 

host galaxy, estimating the source’s distance 
based on its color (float32). 
• hostgal photoz err: The uncertainty associated 

with the photometric redshift of the host galaxy 
(float32). 
• distmod: The distance modulus calculated from 
the photometric redshift of the host galaxy, providing 
a measure of the object’s luminosity distance (float32). 

• MWEBV: The extinction of light due to Milky 
Way dust, accounting for the dimming of light from 
astronomical objects as it passes through interstellar 
dust in the Milky Way (float32). 

• target: The class of the astronomical source, 
represented as an integer (int8). This could refer to 
various types of astronomical objects such as stars, 
galaxies, or supernovae. 

 
2) Light-Curve Information 

• Object ID: Unique identifier, typically an integer 
(int32), for reference and tracking. 

• MJD: Modified Julian Date, a continuous count of 

days since November 17, 1858, used in astronomy. 
• Passband: LSST-specific range of wavelengths, 
usually represented as an integer (int8). 

• Flux: Measured brightness of an object in a 

specific passband, corrected for Milky Way 
extinction (MWEBV). Typically represented as a 
floating-point number (float32). 
• Flux Err: Uncertainty or error in the measured 

flux, also a floating-point number (float32). 
• Detected: Boolean flag (True/False) indicating a 
significant brightness difference at the 3σ level, 
considered statistically significant in statistics. 

The light curves in this study span six distinct bands 
identified as u, g, r, i, z and y, each associated with 
specific light wavelengths. The wavelength ranges for 
these bands are showcased in Table 1 

TABLE 1. Wavelength Range of Light Bands 

 
B. FEATURE EXTRACTION 

Feature extraction played a crucial role in this 
work, as highlighted by Khan et al. [12] for effective 
classification of light sources into multiple categories. To 
capture diverse characteristics of the light bands, we 
extracted both statistical, shape-based and higher-
order features from the training dataset. 

 
1) Statistical Features 

These features quantify properties such as the 
average brightness (μ), weighted average (μw), 
standard deviation (σ), skewness (γ), kurtosis (κ), 
maximum (Xmax) and minimum (Xmin) values, median 
( ˜X ), and median absolute deviation (MAD). 
Additionally, the percentage of values beyond one 
standard deviation from the weighted average is also 
calculated. Comprehensive list of statistical features is 
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shown in table 2. 

TABLE 2. Statistical Features 

  
2) Shape-based Features 

Eight features capture visual distinctions in light 
curve shapes, essential for the classification of 
astronomical entities. These features encompass: •  

Maximum Slope: The maximum slope 
represents the steepest rate of change in the signal and 
is calculated as: 

 

• Amplitude: The amplitude measures the range 
between the maximum and minimum values of 
the signal and is computed as: 

 

• Peaks Above the Weighted Average: This 
feature counts the number of data points in the 
signal that are above the weighted average (µw) 
and is expressed as: 

 

• Maximum Peak Prominence (MaxProm) and 
Minimum Peak Prominence (MinProm): These 
features represent the highest and lowest values 
of peak prominence in the signal, respectively: 

 

• Average Time to Brighten (AvgBrightTime) and 
Average Time to Fade (AvgFadeTime): These 
features denote the average time taken for the 
signal to brighten and fade, respectively. They are 
computed as the average of the time differences 
between consecutive data points where the signal 
experiences significant changes. 

 
3) Wavelet Decomposition 

Using the DB1 wavelet, light curves are 
decomposed into three levels, resulting in decomposed 
components. The energy of these components, 
comprising four features, provides insights into object 
activity across different passbands. The features 
include the energy of wavelet decomposition at detail 
levels 1, 2, and 3, as well as the approximation level 3. 
The energy of the decomposed component at level k, 
denoted by Ek, is calculated using the equation1 

 
where n represents the number of coefficients in the 
decomposed component, and dk(i) denotes the i-th 
coefficient of the decomposed component at level k. 
The features are concatenated to form a feature vector 
of length 161. For each of the six channels, features are 
computed both by concatenating sequentially and 
adding them point-by-point, offering a comprehensive 
view of the object’s profile. Our analysis utilized 
synthetic data provided for training, containing 7,848 
samples distributed among 14 classes. For evaluation, 
a separate set of approximately 3.5 million light curves 
was reserved. We identified a significant class 
imbalance within the training data, with only three 
categories comprising over half of the samples. Figure 
1 provides a detailed breakdown of class distribution 
showcasing the class imbalance challenge within the 
training samples.  

 
FIGURE 1. Distribution of 14 x Classes. 

 
IV. PROPOSED METHODOLOGY 

As already well-established by various researchers 
[10]– [12], [14]–[16] regarding suitability of ensemble 
methods for improvement in classification results; we 
also exhibited the same through extensive 
experimentation. Initially, we used Random Forest [13] 
Ensemble method as used by Khan et al. [12] and 
achieved the claimed accuracy score of 63 %. In order 
to improve the claimed score various other methods 
were extensively experimented. Class imbalance issue 
was resolved by splitting the training and testing set in 
the ratio of 60:40 for every class. We didn’t perform data 
augmentation, as it improved the classification 
accuracy but compromised the integrity of original data. 
Summarized overview of each model with the methods 
is presented in the subsequent paragraphs. 
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• Using the Random Forest [13] ensemble 
technique, the overall training time of the model 
was 345 seconds, while achieved the claimed 
accuracy of 63 %.  

• kNN was only able to achieve accuracy of 43 % 
however, the training time was less than 10 
seconds. 

• The value of k was used keeping in view the 
Rule-of-Thumb defined as k =√n, where k is the 
number of neighbors in k-Nearest Neighbors 
(k-NN) and n is the number of samples in the 
dataset. 

• Making use of CART Model, we achieved 56% 
accuracy score with the training time of 6 
seconds. 

• SVM [17] gave the accuracy of 57% with the 
training time of 19.5 seconds. 

• We also used MLP, with Sigmoid as activation 
function and found out that accuracy score was 
improved to 60.9%. We also found out that the 
time required to train the MLP was increased to 
698 seconds. 

• As a first to establish the ensemble methods, 
we used Majority Voting Ensemble with kNN, 
Decision Tree as base classifier and achieved 
the overall accuracy of 61%. 

• We used other ensemble methods including 
Adaboost, gradient boost and bagging to test 
the respective model performance and found 
that Gradient Boost gave the most promising 
accuracy, surpassing the claimed accuracy of 
Random Forest [12] model by 5 percent. 
Adaboost and bagging classifiers achieved the 
accuracy scores of 50% and 65% respectively. 

V. PERFORMANCE 
In the Kaggle Competition [6], the evaluation metric 

is defined in equation2, which is simply the log loss 
score. 

 
where, Ji is the number of objects in the class set, K is 
the number of classes, ln is the natural logarithm, θj,k is 
1 if observation (j) belongs to class (k) and 0 otherwise, 
(Pjk) is the predicted probability that observation j 
belongs to class k. It is also critically experimented 
through extensive testing that the log loss function 
which is defined in the Kaggle Competition [6] and 
overall model accuracy are inversely proportional to 
each other. The equation which is used to compute the 
overall accuracy of the model is given in equation 3. 

 
The overall performance comparison along with 

model training time is presented in table 3. 

 
 
TABLE 3. Model Performance Metrics 

 
It has been revealed that given the consideration of 

accuracy while ignoring the model computational 
complexity, 

Gradient Boost [7] outperformed all other machine 
learning algorithms. However, the best optimization 
was achieved using Bagging Ensemble method 
wherein decent and comparable accuracy was 
achieved with substantially less computational 
complexity. The entire models used and best ones 
along with the respective training times are highlighted 
in the table3. Likewise, the Confusion Matrix for the best 
model is shown in 2, wherein, it is also established that 
the most challenging case was regarding Class Label: 
52. Since, the class under consideration was 
unpopulated and the dataset as already established is 
highly unbalanced, we made use of Synthetic Minority 
Over-sampling Technique (SMOTE) [18] to balance the 
class distribution. The results were improved, however, 
we ensured data integrity, therefore, we have not 
posted the results achieved after SMOTE. 
 

 
FIGURE 2. Confusion Matrix for Gradient Boost Classifier. 

The AUC for 3 x best models has been presented in 
table 4 whereas the plot for the best model is 
showcased in figure 3. The Gradient Boost classifier 
has achieved consistent superior AUC score(s) class-
wise once compared with Bagging and Random Forest 
classifiers. For instance, the AUC for class label 53 is 
0.9976 with Gradient Boost; once compared with the 
scores acquired with Bagging (0.9878) and Random 
Forest (0.9772). 
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TABLE 4. Class-wise AUC Values - Comparative Analysis of Best Performers 

 
   Class Label  
6 

AUC-GB  
0.9714 

AUC-Bagging  
0.9610 

AUC-RF  
0.9228 

15 0.875 0.8263 0.8313 
16 0.9917 0.9618 0.9421 
42 0.8067 0.7839 0.7663 
52 0.7263 0.7059 0.6999 
53 0.9976 0.9878 0.9772 
62 0.7946 0.7601 0.7528 
64 0.9288 0.9002 0.8823 
65 0.992 0.9617 0.9424 
67 0.765 0.7415 0.7239 
88 0.9754 0.9450 0.9252 
90 0.8741 0.8455 0.8303 
92 0.987 0.9669 0.9371 
 95  0.9584 0.9291 0.9098  

Quite understandably, all 3 models struggled with 
AUC score for Class:52 which faced the imbalance 
issue in comparison to other classes. 
 

 
FIGURE 3. ROC Curve for AUC for Gradient Boost Classifier 

 

In figure3, the overall performance of Gradient Boost 
ensemble is showcased, which is consistent with the 
findings as presented in table4. Overall AUC is also 
computed using equation4. 

 
It is also established that gradient boost ensemble 

technique outperformed the other methods, however, 
considering the trade-off between the accuracy and 
computational efficiency, Bagging ensemble technique 
was most suited to perform this classification task. 
 

 
VI. CONCLUSION 

To conclude, an effort was made in this paper to 
solve a complex classification problem in the absence 
of domain expertise. Making use of pre-processing and 
feature engineering the overall classification accuracy 
was substantially improved. Among the evaluated 
models, the gradient boosting ensemble achieved the 
highest performance but also incurred the highest 

computational cost. Conversely, the bagging ensemble 
offered a compelling balance of simplicity and 
performance. To pursuit the research continuity, 
improved metrics may be introduced. Additionally, 
integration of domain knowledge and astrophysical 
insights into Machine Learning models for enhanced 
interpretation would also yield considerable positive 
outcomes. Deep learning models trained on tailored 
astronomical datasets, may also be suited to perform 
state-of-the-art classification of the light-curves. 
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